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1 Definition

Let
fη(y) = exp(ηy − ψ(η))f0(y)

be a one-parameter exponential family with natural parameter η, cumulant generating func-
tion ψ(η), and base measure f0(y). Let

µ = Eη[y] = ψ̇(η), W (η) = Varη[y] = ψ̈(η).

We can parameterize the distribution using either the natural parameter η or the mean
parameter µ. Letting g = ψ̇−1, we have

η = g(µ).

Now, suppose that we have data (xi, yi) ∈ Rp+1. A canonical generalized linear model
for this data is

yi ∼ fηi ; ηi = xTi β, (1)

for some β ∈ Rp. Hence, we model the natural parameter as a linear function of our
covariates, and the result is a new exponential family with probability density

p(y) =
n∏
i=1

eβ
T xiyi−ψ(xTi β)f0(y) (2)

which is now an exponential family with parameter β ∈ Rp.

2 Examples

Linear regression. Consider a linear regression model with known variance. After rescal-
ing, we can assume σ2 = 1, so we are working with the exponential family

fµ(y) = exp

(
yµ− 1

2
µ2

)
exp

(
−1

2
y2
)

; η = µ.

In this case the mean parameter and natural parameter coincide. We have

yi ∼ N(µi, 1), ηi = µi = xTi β.
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Logistic regression. Suppose we have binary responses yi ∈ {0, 1}. Then, it is appropri-
ate to work with the Bernoulli family:

fµ(y) = exp

(
y log

µ

1− µ
+ log(1− µ)

)
, η = log

µ

1− µ
.

We have
yi ∼ Ber(µi), ηi = logit(µi) = xTi β.

Poisson regression. Suppose we have count responses yi ∈ N. Then, we can work with
the Poisson family:

fµ(y) = exp(y log µ− µ)
1

y!
, η = log µ.

We have
yi ∼ Poi(µi), ηi = log(µi) = xTi β.

3 Parameter estimation

Given data (xi, yi), i = 1, . . . , n, we can fit the parameters β by maximum likelihood. Let
X ∈ Rn×p be the design matrix, whose ith row is xTi , and let y ∈ Rn be the response vector.
For a general mean vector µ ∈ Rn, the log-likelihood of the data is

`(η; y) =
n∑
i=1

(ηiyi − ψ(ηi)) .

From (1), this is equivalent to an exponential family with parameter β :

`(β; y) =
n∑
i=1

(
xTi βyi − ψ(xTi β)

)
= βTXTy −

n∑
i=1

ψ(xTi β). (3)

Differentiating in β, we get the score equation:

0 = ˙̀(β̂; y) = XTy −
n∑
i=1

xiψ̇(xTi β̂) = XTy −
n∑
i=1

xiµ̂i = XTy −XT µ̂.

Hence, the score equation states that the observed value of the sufficient statistic XTy must
equal its expected value under β̂, which is XT µ̂. Thus, we need to solve

XT (y − µ̂) = 0. (4)

Note that in the linear model, µ̂ = Xβ̂, so the score equation (4) reduces to the normal
equations.

Unlike the special case of the linear model, in general µ̂ is a nonlinear function of β̂,
and so (4) cannot be solved explicitly. Notice that (3) is concave, however, since properties
of exponential families imply that φ is convex. As a result, maximizing the likelihood can
reliably be done numerically.
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Newton-Raphson algorithm for the MLE

The standard algorithm for finding a solution to (4) is the Newton-Raphson algorithm carried
out on ˙̀. In particular, the second derivative to ` is given by

῭(β) = −XTWβX,

where Wβ is a n×n diagonal matrix with entries ψ̈(xTi β). One step of the Newton-Raphson
algorithm is obtained by setting the taylor approximation to (4), taken at the previous value
of β̂ to be zero:

0 = XT (y − µβ̂(t))−XTWβ̂(t)X(β̂(t+1) − β̂(t))

β̂(t+1) = β̂(t) + (XTWβ̂(t)X)−1XT (y − µβ̂(t)).

This update can be rewritten as

β̂(t+1) = (XTWβ̂(t)X)−1XTWβ̂(t)

(
W−1
β̂(t)

(y − µβ̂(t)) +Xβ̂(t)
)
,

which has a nice interpretation as the solution to a weighted least squares problem, as
discussed next.

Interpretation as a Gaussian approximation

For GLMs, the above algorithm is sometimes called the iteratively reweighted least squares
algorithm because it can be formulated as a sequence of least-squares problems. The idea is
the following. Suppose we have a current guess β̂(t) of the parameters. Then, we approximate
(1) using a model with heteroskedastic normal errors:

yi = µi(β) + εi, εi ∼ N(0,Wβ(t)(ii)), (5)

since Wβ(t)(ii) is the variance of yi when the true parameter is β̂(t). Next, we use a Taylor
series approximation of µ(β) to get

µ(β) = µ̂(t) + Ŵ (t)(Xβ −Xβ̂(t)), (6)

where Ŵ (t) = Wβ̂(t) . Putting together (5) and (6), we get the approximate weighted linear
model

y = µ̂(t) + Ŵ (t)(Xβ −Xβ̂(t)) + ε, ε ∼ N(0, Ŵ (t)),

which we can rearrange to obtain

ẑ(t) = Xβ + ε, ε ∼ N(0, (Ŵ (t))−1), (7)

where
ẑ(t) = Xβ̂(t) + (Ŵ (t))−1(y − µ̂(t)).

is the adjusted response variable. The solution to this weighted linear model is

β̂(t+1) = (XT Ŵ (t)X)−1XT Ŵ (t)ẑ(t). (8)

The algorithm proceeds by iteratively calculating the linear approximation (7) and then
solving it via (8) to update the parameter estimates. After rearranging terms, this can be
seen to be equivalent to the Newton-Raphson method above.
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4 Inference

Now that we can fit generalized linear models, how does inference work? We might be
interested in finding standard errors and confidence intervals for β̂, or we might want to test
hypotheses with respect to these parameters.

4.1 Confidence intervals

Using standard likelihood theory, we get the following asymptotic distribution of β̂:

β̂ ∼ N (β, (XTWX)−1).

Note that this is the same expression we would get from the approximate weighted linear
model (7). Importantly, note that W itself depends on β. As usual, we can form standard
errors and confidence intervals for β̂ based on this asymptotic distribution.

4.2 Hypothesis testing

Suppose we have two nested models M1 ⊂M2, and we want to test the null hypothesis that
model M1 is adequate. In linear regression, we would usually use the F test, the numerator of
which is RSS(M1)−RSS(M2); i.e. the amount by which switching from M1 to M2 decreases
the RSS.

For generalized linear models, the RSS is no longer appropriate, so instead we use the
deviance. The deviance of a model M is defined as twice the increase in log-likelihood you
get by switching from model M to the saturated model. The saturated model is where we
fit yi ∼ fηi , letting ηi be unrestricted (instead of being parameterized by covariates). From
exponential family theory, the MLE in the unrestricted case is µ̂i = yi. Hence, the definition
of the deviance is

D(y;µ(β̂M)) = 2(`(y; y)− `(y;µ(β̂M))).

For the linear model, note that

D(y; µ̂) =
n∑
i=1

(yi − µ̂i)2,

so indeed it coincides with the RSS.
The deviance itself can be viewed as a statistic for a goodness of fit test for model M ,

and under the null hypothesis that model M fits, it has an asymptotic distribution of

D(y;µ(β̂M)) ∼ χ2
n−|M |,

where |M | is the number of predictors in |M |. More generally, to test model M1 versus model
M2, we would use the difference in deviances D(y;µ(β̂M1)) − D(y;µ(β̂M2)), which is twice
the usual likelihood ratio test statistic. Under the null hypothesis that the smaller model
M1 fits, it has the asymptotic distribution

D(y;µ(β̂M1))−D(y;µ(β̂M2)) ∼ χ2
|M2|−|M1|.
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