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1 Introduction to Bayesian statistics

Let’s say we have some parameter θ which we wish to estimate, and that we have
data X to help us with this.

In the frequentist paradigm, we assume that θ is fixed, and that given θ, our data X
has some distribution p(X | θ). As a function of θ (X fixed), p(X | θ) is called the
likelihood function. One way to estimate θ here is to maximize p(X | θ) w.r.t. θ,
giving the MLE.

In the Bayesian paradigm, we assume instead that θ is randomly drawn from some
prior distribution p(θ). The prior distribution is a reflection of what we believe
about θ before we see the data X. Once we see the data X, we update our beliefs in
the distribution of θ. This is done using Bayes rule:

p(θ | X) =
p(θ)p(X | θ)∫
p(θ)p(X | θ)dθ

. (1)

The quantity on the LHS above is called the posterior distribution, and this is the
fundamental object in Bayesian statistics. With the posterior distribution, we can
compute any statistic that we want, and we are frequently interested in

• the posterior mean, E[θ | X], as an estimator for θ

• the posterior mode, arg max
θ

p(θ | X), as an estimator for θ

• the posterior variance, to asses uncertainty and give a credible interval for θ

• quantiles of the posterior distribution, to form a credible interval
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Recall that a credible interval is a interval I such that P (θ ∈ I | X) = 1 − α
for pre-determined α. We can form a credible interval with quantiles of the posterior
distribution, but this may be hard to compute, and becomes hard to do the analagous
operation in high-dimensions. Instead, we can form an approximate credible interval
by using a Gaussian approximation to the posterior.

2 Hierarchical models

Let’s consider a concrete example1: estimating the probability θ of a disease in a
population of interest. If we have a sample of n subjects and if X denotes the
number of subjects in the sample who have the disease, then X | θ ∼ Binom(n, θ). If
we pick a fixed prior θ ∼ Beta(α, β) (α and β fixed), then the posterior distribution
is given by θ | X ∼ Beta(α + X, β + n − X). In this context, θ is the parameter of
interest; α and β are called hyperparameters.

The above works if we know what α and β are; in practice we don’t. One approach is
to set α and β so that Beta(α, β) is as “non-informative” as possible (e.g. Beta(1, 1) =
U [0, 1]). If we have other samples on hand, we could use them to estimate α and β.
Assuming we have J samples of size n1, . . . , nJ , we consider the following model:

θj
iid∼ Beta(α, β), j = 1, . . . , J,

Xj | θj
ind∼ Binom(nj, θj), j = 1, . . . , J.

We can use the observed mean and standard deviation of the
Xj

nj
’s to estimate α and

β. This approach is known as the empirical Bayes approach.

Hierarchical modeling is yet a different approach. Instead of assuming that α and
β are fixed, we give them their own prior distributions (which we call hyperpriors).
Usually, we try to make these hyperprior distributions as “non-informative” as pos-
sible to reflect our ignorance of the unknown hyperparameters. In our example, we
may want the beta distribution’s mean α

α+β
to be uniformly distributed on [0, 1] and

1√
α+β

, an approximation of the standard deviation, to be uniformly distributed on

[0,∞). The hierarchical model defined by this is as follows::

α

α + β
∼ U [0, 1],

1√
α + β

∼ U [0,∞),

θj
iid∼ Beta(α, β), j = 1, . . . , J,

Xj | θj
ind∼ Binom(nj, θj), j = 1, . . . , J.

1This is a slight variation of the rat tumor example in Gelman et al.’s Bayesian Data Analysis,
3rd ed., pp102-111.
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As with any Bayesian set-up, there is a lot of disagreement on what the appropriate
prior/hyperprior should be.

The standard Bayesian machinery goes through with hierarchical models, albeit in a
more complicated form. We usually compute 3 things:

1. The joint posterior distribution of all the parameters:

p(θ, α, β | X) ∝ p(α, β) · p(θ | α, β) · p(X | θ, α, β).

2. The conditional posterior distribution for the parameters given the hyperpa-
rameters: p(θ | α, β,X).

3. The marginal posterior distribution for the hyperparameters: p(α, β | X) =∫
p(θ, α, β | y)dθ.

We then draw samples from the posterior distribution in the following way:

1. Draw hyperparameters α, β from marginal posterior p(α, β | y).

2. Draw parameter θ from the conditional posterior distribution, p(θ | α, β,X),
given the drawn value of (α, β).

3 Sampling in Bayesian models

In section 1, we saw that the posterior distribution is the key to Bayesian inference.
Let π denote the posterior distribution p(θ | X). If we can get S samples θs from π,
then for any function h we can estimate

E[h(θ) | X = x] =

∫
h(θ)π(θ)dθ ≈ 1

S

S∑
s=1

h(θs). (2)

Thus, we want to find good algorithms for sampling from π. In some cases, the
integral in the denominator in (1) cannot be computed tractably; when this happens,
we need algorithms that can sample from an unnormalized density πu.

Here are some sampling methods that can be used:

• Acceptance-rejection sampling2,

2See Section 4.7 of http://statweb.stanford.edu/~owen/mc/Ch-nonunifrng.pdf for details.
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• Importance sampling3,

• Markov chain Monte Carlo (MCMC) methods (e.g. Gibbs sampling or the
Metropolis–Hastings algorithm),

3.1 Gibbs sampling

Let’s say we want to draw samples X ∼ π, where X ∈ Rd. In some cases, while we
cannot sample from π directly, we may have access to the full conditional distri-
butions, i.e.

Xj | X1, . . . , Xj−1, Xj+1, . . . , Xd, j = 1, . . . , d.

Gibbs sampling gives us a way to use these full conditional distributions to get samples
from π. This can be very attractive when the full conditional distributions have closed
forms. The algorithm is as follows:

1. Initialize x0 ∈ Rd.

2. For s = 1, . . . , S:

(a) Let j be the index in {1, . . . , d} such that j = s mod d.

(b) Draw z from the full conditional distribution Xj | X1 = xs−1,1, . . . , Xj−1 =
xs−1,j−1, Xj+1 = xs−1,j+1, . . . , Xd = xs−1,d.

(c) Set

xs,i =

{
z if i = j,

xs−1,i if i 6= j.

The x0, x1, . . . , xS constitute our sample from π. Note that the xi’s can be very
correlated with each other: adjacent xi are equal in all but one coordinate.

The algorithm as described above is called the systematic scan Gibbs sampler,
as we sweep through the d coordinates systematically. The random scan Gibbs
sampler replaces step 2(a) with j ∼ Unif{1, . . . , d}.

In this simple form, Gibbs sampling is a special case of the Metropolis–Hastings
algorithm.

3See http://statweb.stanford.edu/~owen/mc/Ch-var-is.pdf for details.
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3.2 Metropolis–Hastings

Metropolis–Hastings is the most widely used MCMC method, because it applies to
a wide variety of cases. As above, suppose we wish to draw samples X ∼ π where
X ∈ Rd. For each w ∈ Rd, let g(· | w) be some density that is easy to sample from.
This is specified by the user, and this can be anything, provided the support of g
contains the support of π.

1. Initialize x0 ∈ Rd.

2. For s = 1, . . . , S:

(a) Draw W ∼ g(· | xs−1)

(b) With probability min
(

1, π(W )g(xs−1|W )
π(xs)g(W |xs−1)

)
, set xs = W . Otherwise, set xs =

xs−1.

Again, x0, x1, . . . , xS form an approximate sample from π, and as always, these points
may be highly correlated. A good MCMC sample will have S large enough such
that there are many “indpendent” samples, and precisely quantifying when this will
happen is the subject of a lot of research in Bayesian statistics.
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