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1 What is a contingency table?

A contingency table is simply a tabulation of the empirical joint distribution of a set of
categorical random variables.

Let’s say that (X, Y ) ∈ [I]×[J ] are categorical random variables (here [I] denotes {1, . . . , I}).
Suppose that P[X = i, Y = j] = πij. We observe i.i.d. observations (Xm, Ym) for m =
1, . . . , n, and we tabulate

nij = #{m : Xm = i, Ym = j}.

If we take nij to be the (i, j) entry of a neat little grid, we have ourselves an I×J contingency
table!

We may have higher order contingency tables if we want to study more random variables.
For example, we might have (X, Y, Z) ∈ [I]× [J ]× [K]. We can also think of the counts for
one categorical random variable as a contingency table of order 1.

2 Sampling models for contingency tables

For simplicity, let’s consider 2× 2 tables, whose entries are (n11, n12, n21, n22).

There are several sampling models for this table, characterized by what margins of the table
(if any) we condition on. These sampling models are what we use to get estimates for our
parameters, or to construct hypothesis tests.
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No conditioning: Poisson sampling. The unconditional model for 2× 2 tables is

nij
ind∼ Poi(µij) = Poi(µπij), (1)

where
∑

ij πij = 1. This models the scenario when we did not fix any sample sizes in advance,
and just observed a certain process with these four possible outcomes for a certain period of
time.

Conditioning on table total: multinomial sampling. Suppose we collected a total of
n people, and then observed for each of them whether they smoked and whether they have
lung cancer. Then, we are conditioning on the total number of entries in the table, which
results in the multinomial sampling model:

nij∼Mult(n, πij).

Conditioning on row totals: binomial sampling. Consider a prospective study, where
we fixed n1+ and n2+, the number of people assigned to the treatment and control groups.
Then we observed an outcome for each person. In this case, the rows of the table are
distributed as independent binomials:

n11 ∼ Bin(n1+, π1), n21 ∼ Bin(n2+, π2), π1 =
π11

π11 + π12
, π2 =

π21
π21 + π22

.

Conditioning on column totals: binomial sampling. Consider a retrospective case-
control study, where we fixed n+1 and n+2, the number of people with a disease and the
number of people without a disease. For each person, we measured whether they had a
certain exposure (e.g. smoking). In this case, the columns of the table are distributed as
independent binomials:

n11 ∼ Bin(n+1, γ1), n12 ∼ Bin(n+2, γ2), γ1 =
π11

π11 + π21
, γ2 =

π12
π12 + π22

.

Conditioning on row and column totals: hypergeometric sampling. Consider con-
ditioning on the row and column totals of the table. There is one degree of freedom left in
the table: once n11 is fixed, the rest of the table is determined.

3 What questions are we trying to answer?

Here are the 3 most basic questions we might want to answer for contingency tables:
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1. Testing for independence. Perhaps the most common question to ask about an
I × J table is whether X and Y are independent. Viewing Y as a response and X as
an explanatory variable, independence implies that the distribution of Y is the same
no matter what X is, e.g. the chances of getting a heart attack are the same regardless
of whether you take aspirin or a placebo.

2. Testing for goodness of fit. Here, we want to test if the binned counts we see match
some theoretical distribution. This is most commonly used when we have binned counts
for a single continuous random variable, and we want to test whether it came from
some distribution (e.g. Exp(1)).

For each of these cases, we can use the Pearson and generalized likelihood ratio tests.
The strategy is as follows:

1. For each cell (i, j), compute the expected count for the cell under the null hypothesis
(which we denote by µ̂ij). The expected counts are computed from the MLE fit on
the whole table. In the special case of testing independence, the expected counts then
depend only on the marginal totals.

2. Compute either the Pearson χ2 statistic:

X2 =
∑
i,j

(nij − µ̂ij)
2

µ̂ij

,

or the likelihood ratio test statistic:

G2 = −2 log Λ = 2
∑
i,j

nij log(nij/µ̂ij),

where Λ is the likelihood ratio.

3. Reject if the test statistic is large. Both of these statistics have asymptotic χ2 distri-
butions, with the degrees of freedom depending on the test we are running.

• For test of independence, df = (I − 1)(J − 1).

• For test of goodness of fit, if we estimate d parameters under the null with IJ
total entries in the table, df = IJ − 1− d.

Fisher’s exact test for 2× 2 tables

For testing independence in 2 × 2 tables, we have another option. The tests above rely on
asymptotic χ2 distributions; If we have a small sample, then the asymptotics might not have
kicked in yet. In the 2× 2 case, we can use Fisher’s exact test instead.
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Under the null hypothesis of independence, conditional on the row and column margins of
a 2 × 2 table, n11 ∼ HyperGeom(n1+, n+1, n). Hence, we use this exact null distribution to
compute small-sample p-values. This is called Fisher’s exact test or the hypergeometric
test.

4 Loglinear and logistic regression models

Loglinear regression (sometimes called Poisson regression) and logistic regression models are
the big guns you bring out for serious contingency table analysis. Basically all of the tests
above are just special cases of various tests of parameters in these GLMs. Logistic regression
models capture conditional distributions Y |X, so are appropriate for cases when Y is viewed
as a response and X is explanatory. On the other hand, loglinear models capture the joint
distribution of (X, Y ), so are appropriate when we want to view all variables as response
variables. Nevertheless, the two kinds of models have strong connections and can often be
translated into each other.

Loglinear models for independence and interaction in I × J tables.

• Independence is modeled
log µij = λ+ λXi + λYj .

For identifiability, we’ll need constraints such as λXI = λYJ = 0 or
∑

i λ
X
i =

∑
j λ

Y
j = 0.

• The saturated model is

log µij = λ+ λXi + λYj + λZk + λXY
ij .

The λXY
ij ’s are association terms which reflect deviations from independence. For

identifiability, with constraints λXI = λYJ = 0, we’ll need further constraints λXY
Ij =

λXY
iJ = 0. There are exactly IJ parameters in this model, and the ML fitted values are
{µ̂ij = nij}.

Inference for loglinear models. Estimates and confidence intervals for loglinear model
parameters can be obtained using regular GLM methodology, as we discussed last time.
Moreover, various tests of different kinds of independence can be framed as either score tests
(resulting in Pearson X2 statistics) or likelihood ratio tests (resulting in G2 statistics).
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