
Expectation Maximization (EM) Algorithm

Gene Katsevich, Kenneth Tay, Stephen Bates

July 18, 2019

1 Introduction

For many interesting statistical models, the likelihood is non-convex and hence difficult to
work with. As a result, in order to estimate the parameters by maximum likelihood we must
turn to algorithms for nonconvex optimization, and the EM algorithm is one useful example.
EM is particularly appealing for statistical models involving latent variables, because in these
models the EM steps can often be formulated analytically and executed quickly.

2 Motivating example

As a first example, we will consider a mixture model based on a question from problem 2 of
the 2005 Applied qual. We observe lifetimes Ti of n bacteria. It is believed that some small
unknown fraction ε of the n bacteria have exponential distribution with mean µ, while the
remaining bacteria have exponential distribution with mean 1. How can we estimate ε and
µ?

We can try the maximum likelihood approach. Since

T1, . . . , Tn
i.i.d.∼ (1− ε) · Exp(1) + ε · Exp(µ),

the log-likelihood is

`(ε, µ;T) =
n∑
i=1

log
(
ε · µ−1e−Ti/µ + (1− ε)e−Ti

)
.

The mixture aspect of this problem has led to the log of a sum in `(ε, µ;T), which makes
find the MLE difficult:

2

• There is no closed form for (ε̂, µ̂), so an iterative approach will be necessary, and

• `(ε, µ;T) is non-convex in (ε, µ).

The EM algorithm is an iterative approach to maximizing a likelihood, designed for the case
when there are latent variables (or missing data) in the problem. In our example, we take
the latent variables to be the identities of the mixture component each bacteria belongs to.

2.1 Complete data log-likelihood

For each i = 1, . . . , n, let Zi be the random variable such that Zi = 0 means bacteria i
belongs to the Exp(1) component, while Zi = 1 means it belongs to the Exp(µ) component.
This means that

Ti | Zi = 0 ∼ Exp(1), Ti | Zi = 1 ∼ Exp(µ).

Wouldn’t it be great if we got to observe the Zi’s? Let’s indulge ourselves and pretend for
a moment that we have observed these latent variables. This leads to the complete data
likelihood:

L(ε, µ;T, Z) =
n∏
i=1

εZi(1− ε)1−Zi
(

1

µ
e−Ti/µ

)Zi (
e−Ti

)1−Zi
. (1)

Taking a log, we get the complete data log-likelihood

`(ε, µ;T, Z) =
n∑
i=1

[
Zi log ε+ (1− Zi) log(1− ε)− Zi log µ− TiZi

µ
− Ti(1− Zi)

]
= log ε

n∑
i=1

Zi + log(1− ε)
n∑
i=1

(1− Zi)− log µ
n∑
i=1

Zi −
1

µ

n∑
i=1

TiZi + C. (2)

We no longer have logs of sums and we can easily derive the MLE:

ε̂ =

∑
i Zi
n

, µ̂ =

∑
i TiZi∑
i Zi

.

That’s very nice, and exactly what we would have expected. Of course, we can’t do this
because we don’t know the Zi!

2.2 Expected complete data log-likelihood

One way around this is to guess what the values of the Zi are. Can we do better instead
of random guessing? In the spirit of an iterative algorithm, let’s assume that we have some

Applied Statistics Qualifying Exam Preparation

3

guess for the parameters (ε̂k, µ̂k). We can then plug in the expectations of the Zi’s under
this guess into the complete data log-likelihood (2).

Let

π̂ki = Eε̂k,µ̂k [Zi | Ti] = Pε̂k,µ̂k [Zi = 1 | Ti]

=
ε̂k 1

µ̂k
e−Ti/µ̂

k

(1− ε̂k)e−Ti + ε̂k 1
µ̂k
e−Ti/µ̂k

.

Here, π̂ki reflects how likely it is that Ti was drawn from Exp(µ). Then, we can write down
the expected complete data log-likelihood:

˜̀k(ε, µ;T) = Eε̂k,µ̂k [`(ε, µ;T, Z) | T] (3)

= log ε
n∑
i=1

π̂ki + log(1− ε)
n∑
i=1

(1− π̂ki)− log µ
n∑
i=1

π̂ki −
1

µ

n∑
i=1

Tiπ̂
k
i .

That is a nice expression! We can easily optimize this to get our next guess for ε and µ:

ε̂k+1 =

∑
i π̂

k
i

n
, µ̂k+1 =

∑
i π̂

k
i Ti∑

i π̂
k
i

. (4)

This is in essence what the EM algorithm is: (3) is the E (Expectation) step, while (4) is
the M (Maximization) step.

3 EM in general

Assume that we have data X and latent variables Z, jointly distributed according to the law
pθ(X,Z). This joint law is easy to work with, but because we do not observe Z, we must
deal with

log pθ(X) = log

[∑
z

pθ(X,Z = z)

]
.

There’s the log of a sum again! Let’s try to get around it in the following way: Let θk be
the current estimate of θ. Then

`(θ) = log(pθ(X)) = EZ∼p
θk

(Z|X) [log(pθ(X))]

= EZ∼p
θk

(Z|X)

[
log

(
pθ(X,Z)

pθ(Z|X)

)]
= EZ∼p

θk
(Z|X) [log (pθ(X,Z))]︸ ︷︷ ︸

l̃(θ;θk)

−EZ∼p
θk

(Z|X) [log (pθ(Z|X))]︸ ︷︷ ︸
R(θ;θk)

Applied Statistics Qualifying Exam Preparation

4

We thus have an neat decomposition of log(pθ(X)) involving the expected complete data
log-likelihood, and we can turn this into a lower bound by noting that R(θ; θk) ≤ R(θk; θk),
because

R(θ; θk)−R(θk; θk) = EZ∼p
θk

(Z|X)

[
log

(
pθ(Z|X)

pθk(Z|X)

)]
≤ logEZ∼p

θk
(Z|X)

[
pθ(Z|X)

pθk(Z|X)

]
= logEZ∼pθ(Z|X) [1] = 0

Consequently, we have the following lower bound for the log-likelihood:

`(θ) = log(pθ(X)) ≥ ˜̀(θ; θk) +R(θk; θk).

Note that if we cannot closed-form updates for the M step, we could take a Newton or
gradient step instead, and by the argument above, as long as we increase ˜̀(θ; θk), the expected
log-likelihood `(θ) will increase. Notice that this lower bound is tight at θ = θk. Furthermore,
only the first term depends on θ, so maximizing ˜̀(θ; θk) over θ will yield a new point with
higher log-likelihood, as shown in the figure below. Motivated by the above observation, the
EM algorithm proceeds in two steps:

1. E-step: compute ˜̀(θ; θk)

2. M-step: find θ to maximize ˜̀(θ; θk)

Figure 1: A visualization of an EM step.

By the above remarks, we see that the EM algorithm is an ascent method; the likelihood
increases at each step. While this is reassuring, this does not imply that the algorithm

Applied Statistics Qualifying Exam Preparation

5

finds a global optimum. As a result, one typically does several runs of EM with different
starting values and chooses the resulting estimate with the highest likelihood.

Remarks

The EM algorithm is one of many optimization algorithms. Its convergence can be slow
depending on the problem, and other methods might outperform it. Nevertheless, EM
is popular among statisticians for problems involving latent variables, because it has a n
intuitive statistical structure and often has closed-form updates at each iteration.

Note that if we cannot closed-form updates for the M step, we could take a Newton or
gradient step instead, and by the argument above, as long as we increase ˜̀(θ; θk), the log-
likelihood `(θ) will increase.

Applied Statistics Qualifying Exam Preparation

