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Setting

Suppose we have an exponential family with density

Pβ(x) = eβ
>T (x)−Λ(β)m(x)

where T (x) ∈ Rp is a vector of sufficient statistics and β ∈ Rp is the unknown
parameter of interest. We often wish to estimate β using maximum likelihood, which
is possible in principle since the log-likelihood is concave, as exponential family theory
tells us that Λ(β) is convex. This means any convex optimization solver will work,
even something as simple as gradient descent. However, in some cases we may not
know Λ(β) or it may be difficult to evaluate it or its derivatives. Lindsey’s method
is a technique for estimating the parameter β, even when the CGF Λ is
unknown.

Step 1: discretizing the likelihood

The first step in Lindsey’s method is discretizing the likelihood. Take a partition
B1, . . . , BK of the sample space, with associated measures m(B1), . . . ,m(BK). Let
N1, . . . , NK be the number of observations in these bins, respectively, and let N be the
total number of observations. Now after this discretization, we have the probability
model:

(N1, . . . , Nk) ∼ mult(N, (πβ(B1), . . . , πβ(Bk)))

with

πβ(Bj) = eβ
>T (x)−Λ(β)m(x)

≈ m(Bj)e
β>T (xj)−Λ(β)

where xj is some point in Bj, usually taken to be the center. We then have

πβ(Bj) ≈ π̃β(Bj) :=
m(Bj)e

β>T (xj)∑K
k=1m(Bj)eβ

>T (xk)
.

Importantly, in the final expression, the Λ(β) term has canceled out from both the
numerator and denominator. In what follows, we will fit the discretized approximate
model

(N1, . . . , Nk) ∼ mult(N, π̃β(Bj)), (1)

1



2

because the likelihood of this model no longer depends on Λ(β).

Step 2: fitting with Poisson regression

Next, we fit the model (1) using Poisson regression. For convenience, we will use the
Poisson trick, i.e. we take the model N ∼ pois(λ). In that case, we can write the
model as

Nj ∼ pois(λπ̃β(Bj)), (2)

independently for j = 1, . . . , k, and then we will reparameterize as

Nj ∼ pois(eαm(Bj)e
β>T (xj)),

for convenience. This gives us the likelihood

l(β, α) =
K∑
j=1

Nj(β
>T (xj) + α + log(m(Bj)))−

K∑
j=1

eαm(Bj)e
β>T (xj). (3)

Solving for α gives eα̂ = N∑K
j=1m(Bj)e

β>T (xj)
. We then obtain

l(β, α̂) =
K∑
j=1

Nj(β
>T (xj) + log(m(Bj)))−N log(

K∑
j=1

m(Bj)e
β>T (xj))

=
K∑
j=1

Nj log(π̃β(Bj)).

This last expression is also the log-likelihood of the multinomial model (1), so we see
that MLE of β from (3) is exactly the same as the MLE of β from (1). Furthermore,
the MLE can be obtained from (3) using standard Poisson regression software, such
as the glm command in R.

Note that unlike the point estimates, the confidence intervals from the models and
(1) and (2) are not exactly the same, since the CIs from the poisson regression are
also taking into account the variability in N . For large enough N , however, the CIs
for β will be approximately the same from either the binomial model or the Poisson
model.
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