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Setting

Suppose we have a real-valued response yi and p associated features x(1), . . . x(p). A very
simple multivariate model for the response given the features is the linear model:

yi = β1x
(1)
i + · · ·+ βpx

(p)
p + εi i = 1, . . . , n. (1)

Here, β1, . . . , βp are unkown parameters to be fit from the data. This document discusses
estimation and testing of such models, and in particular we will rely heavily on (i) pro-
jection matrices and (ii) the rotational symmetry of the multivariate Gaussian
in the following derivations.

Fitting the model

Given the functional form (1), the first question is how one should the parameters β? To
this end, a natural route forward is to write down a parametric distribution for εi and then
fit by maximum likelihood. For now, we will assume i.i.d. Guassian residuals:

εi
i.i.d.∼ N (0, σ2) i = 1, . . . , n. (2)

Treating σ as an unkown parameter, the log-likelihood becomes

l(β, σ) =
n∑
i=1

− 1

2σ2
(yi − β1x(1)i + · · ·+ βpx

(p)
p )2 − n log(σ).

Maximizing over β is equivalent to the following:

β̂ = arg min
β
‖Y −Xβ‖2 (3)

and

σ̂2 =
1

n

∥∥∥Y −Xβ̂∥∥∥2 .
We can find an expression for β by taking the gradient of the above expression with

respect to β and setting it to zero:

0 =
δ

δβ
(Y −Xβ)T (Y −Xβ) = −2XTY + 2XTXβ.

This leads to the expression:
β̂ = (XTX)−1XTY. (4)
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Interpretation as a projection

Notice that Xβ̂ = X(XTX)−1XTY and the matrix PX := X(XTX)−1XT is the orthogonal
projection onto the column space of X. Thus, the estimator (3) is finding the coefficients
β such that the predicted values Ŷ are the vector closest to the observed Y in euclidean
distance that fall in the column space of X.

arg min
β
‖Y −Xβ‖2 = arg min

β
‖(PX + I − PX)Y − (PX + I − PX)Xβ‖2

= arg min
β
‖(PX(Y −Xβ) + (I − PX)(Y −Xβ)‖2

= arg min
β
‖PX(Y −Xβ)‖2 + (Y −Xβ)TP TX(I − PX)(Y −Xβ) + ‖(I − PX)(Y −Xβ)‖2

= arg min
β
‖PXY −Xβ‖2 + ‖(I − PX)Y ‖2

= arg min
β
‖PXY −Xβ‖2

and this last expression is minimized by (4), since PX = X(XTX)−1XT and plugging
in the value gives 0, which is clearly a minimizer since the expression is nonnegative. In
this calculation, we used that PX(I − PX) = 0, which is a consequence of the fact that
PXPX = PX . We also used the fact that PXXβ = Xβ, which follows from the definition
of an orthogonal projection, and can also be verified directly using the explicit expression
for PX .

Distribution of the estimator and residual

Notice that under the model (2), we can directly compute the sampling distribution of the
estimator β̂:

Y ∼ N (Xβ, σ2I)

(XTX)−1XTY ∼ N (β, (XTX)−1XTσ2IX(XTX)−1)

∼ N (β, σ2(XTX)−1).

Similarly, we can find distribution of the residual ‖Y −Xβ‖ using multivariate Gaussian
computations. In particular, we have:∥∥∥Y −Xβ̂∥∥∥2 = ‖Y − PXY ‖2 = ‖(I − PX)(Xβ + ε)‖2 = ‖(I − PX)ε‖2 .

Using a change of basis, we can show that this has has a σ2χ2
n−p distribution. Geometrically,

this is because (I −PX)ε is simply a (spherical) multivariate Gaussian on a linear subspace
of dimensions n− p.

Testing submodels (the F-test)

A frequent goal is to test that some set of coefficients are all null and can be dropped
from the model with a noticeable reduction in power. The most common is example is of
course checking if a single coordinate is not equal to zero. Formally, suppose we have a
matrix of features (X1, X2) where X1 ∈ Rn×p1 and X2 ∈ Rn×p2 , and let β = (β1, β2) be
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the associated vector of coefficients, with β1 ∈ Rp1 and β2 ∈ Rp2 . We wish to test the null
hypothesis β2 = 0. To this end, we will decompose the vector Y into 3 orthogonal parts:

Y = PX1Y + (P(X1,X2) − PX1)Y + (I − P(X1,X2))Y.

Under the null distribution,∥∥(I − P(X1,X2))Y
∥∥2 =

∥∥(I − P(X1,X2))ε
∥∥2 ∼ σ2χ2

n−p1−p2 ,∥∥(P(X1,X2) − PX1)Y
∥∥2 =

∥∥(P(X1,X2) − PX1)ε
∥∥2 ∼ σ2χ2

p2 ,

and these two variables are independent, since (I − P(X1,X2))ε and (P(X1,X2) − PX1)ε are
uncorrelated because (I − P(X1,X2))(P(X1,X2) − PX1) = 0. This means that the statistic

T =

∥∥(P(X1,X2) − PX1)Y
∥∥2 /p2∥∥(I − P(X1,X2))Y

∥∥2 /(n− p1 − p2) ∼ Fp2,n−p1−p2 ,
since the F-distribution is defined as the distribution of the scaled ratio of independent χ2

variables. This statistic will tend to be large when X2 predicts Y well, so we reject the null
hypothesis that β2 is 0 when T is larger than the 1− α quantile of the F distribution.

Notice that ANOVA is a special case of this test, where X is a set of indicators of group
memberships.
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