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• Given n observations, find some k � n prototypes/objects to represent them (or their variation). Sometimes this amounts
to fitting a low-dimensional surface to the observations.

– General algorithms: principal components analysis (PCA), factor analysis, projection pursuit, independent compo-
nent analysis (ICA), principal curves and surfaces

– Rows in contingency tables: correspondence analysis

• Matrix completion: Hard Impute, Soft Impute

• Classification: Discriminant analysis (all versions)

• Given distances/dissimilarities/similarities, find some lower-dimensional embedding that preserves this structure:

– General algorithms: classical metric scaling, Kruskal-Shepard metric scaling, Kruskal-Shepard non-metric scaling.

– Focus on local structure: isometric feature mapping (ISOMAP), local linear embedding (LLE), local MDS

• Unsupervised clustering: k-nearest neighbors, k-means, self-organizing maps (SOM), spectral clustering
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Method Description & Assumptions Pros & Cons
Gaussian copu-
las

Idea: Want to draw samples from some multivariate dis-
tribution F that has marginals F1, . . . , Fp. We can use a
multivariate Gaussian to do so in a way that respects the
marginal distributions and the correlations between the fea-
tures.
We assume Z ∼ Np(0, R), where R is some correlation ma-
trix. Set Xj = F−1

j (Φ(Zj)). Then (X1, . . . , Xp) will have
the desired marginals with some correlation between the
features.

- Have to estimate R. Also, R gives corre-
lation between the Zj’s, not the Xj’s.

Principal com-
ponents analysis
(PCA)

Dimensionality reduction method. Idea: Think of observa-
tions as points in Rp. For a given k, find the top k orthogonal
directions along which the observations vary the most.
This can be accomplished simply by taking an SVD of the
data matrix: if X = UDV T , then the first k PCs are given
by UkDk, and the first k loading vectors are given by Vk.

+ Easy to compute
+ Makes intuitive sense as a dimensional-
ity reduction tool.
- PCs are in general linear combinations
of all p original features, so not sparse in
original feature space. (This can be fixed
by using sparse PCA methods.)
- How to choose the number of PCs?

Hard Impute For matrix completion with missing entries. Let Ω denote
the set of entries of X that are observed. Idea: Assume some
low rank structure, minimize Frobenius norm over observed
entries: min

rank(Z)=L
‖PΩ(X)− PΩ⊥(Z)‖F .

Iterative algorithm: Initialize by randomly filling in the
missing entries. In each iteration, take the rank-L SVD
of the most updated X matrix, then update the missing
entries in X with the entries from this rank-L SVD.

+ Fast algorithm.
- Assumes low rank structure.
- Objective function is non-convex, so al-
gorithm is not guaranteed to converge to a
global minimum.

Soft Impute Idea: Solve a convex relaxation of the minimization problem
for Hard Impute instead: min

rank(Z)=L
‖PΩ(X) − PΩ⊥(Z)‖2

F +

λ‖Z‖∗, where ‖ · ‖∗ denotes the nuclear norm.
Algorithm is basically the same as Hard Impute, except
instead of taking the rank-L SVD Zi+1 = ULDLV

T
L , take

Zi+1 = ULS(D,λ)LV
T
L , where S(d, λ) = (d− λ)+.

+ Problem is convex and so we can prove
convergence.
- Not the objective function that we really
want.
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Method Description & Assumptions Pros & Cons
Graphical
LASSO

Assume that the variables X1, . . . , Xp are jointly Gaussian
with joint density X ∼ N (µ,Σ). Let Θ = Σ−1. In this
set-up, Xi and Xj are conditionally independent iff Θij = 0.
Idea: Estimate conditional dependence structure of
data by using L1 regularization of the log-likelihood:
max

Θ
log det Θ − tr(SΘ) − λ‖Θ‖1, where S is the sample

covariance.
Factor analysis Idea: Produce a small set of factors which explain the corre-

lations among the given variables. The model is X = Λf+e,
where X represents the observed variables, e ∈ Rp repre-
sents the unique factors for each variable, f ∈ Rq represents
the common factors, and Λ ∈ Rp×q represents the factor
loadings.
By considering the covariances, we get Σ = Cov(X) =
ΛΛT + Ψ, where Ψ = Cov(e) = diag(ψ1, . . . , ψp). Various
methods are used to estimate Λ and Ψ.

+ There are factor analysis methods that
do not have any distributional assumptions
(e.g. principal factor method); they just
work on correlations.
- For any decomposition Λ and Ψ, V Λ and
Ψ (with V ∈ Rq×q orthonormal) give an
equivalent model. Hence, there is an in-
herent non-uniqueness for factor analysis.

Projection pur-
suit

Idea: For multivariate random vector y, most projections
αTy (with ‖α‖2 = 1) look “normal”. We try to find projec-
tions which are “non-normal”. These projections can show
us some of the structure of teh data.
Defining entropy as I(f) = −Ef [log f ], the more random
or uniform a distribution, the higher the entropy. Thus, we
want to find α such that I(αTy) is minimized.
Friedman formulates the problem as maximizing a
quantity representing departure from uniform instead:
min
‖α‖2=1

∫ 1

−1
[PR(r) − 1/2]2dr, where PR is the density of

R = 2Φ(αTy)− 1.
Independent
component
analysis (ICA)

Idea: Our data X is really a linear transformation of sources
S, X = AS, with the elements of S being independent and
non-Gaussian. A is known as the mixing matrix. Our goal
is to estimate A and the distributions of the Sj’s.
Usually solved using entropy H and mutual information
I(Y ) =

∑p
j=1 H(Yj)−H(Y ). We want to find A that mini-

mizes I(ATX). There is also an alternating algorithm (Pro-
DenICA) using tilted Gaussian densities.

+ Unlike factor analysis, there is a unique
solution.
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Method Description & Assumptions Pros & Cons
Correspondence
analysis

Idea: Try to perform PCA for J ×K contingency tables.
After normalizing by row totals, each row is a “profile” in
the simplex in RK (entries sum to 1). We want to find a
subspace that approximates the rows well in the appropriate
metric.
The solution to this problem ends up being the generalized
SVD.

Principal curves
& surfaces

Goal is to find a low-dimensional manifold which approxi-
mates the data well. Idea: PCA solves min

∑n
i=1 ‖xi−(α0+

V γi)‖2. Instead of approximating with a linear manifold,
approximate by a smooth manifold: min

f,γi

∑n
i=1 ‖xi−f(γi)‖2,

where f belongs to some smooth family.
Solve using an iterative algorithm: For fixed f , for each
i pick γi to minimize ‖xi − f(γi)‖. For fixed γi’s, model
xij = fj(γi) + εij.

+ Typically used for data visualization (2D
& 3D).

K-means clus-
tering

Idea: minimize the within-cluster scatter:∑K
k=1

∑
C(i)=k ‖xi − x̄k‖2, where C(i) is the cluster

membership for observation i.
Can be solved iteratively: Given centroids, assign each ob-
servation to its closest centroid. Given assignments, recom-
pute centroid locations.

+ Easy to implement.
- Solution depends on starting configura-
tion (only local optimum reached).
- How to choose K?

Self-organizing
maps (SOM)

An online version ofK-means, where the centroids are some-
what constrained.
As points come in, add point to the cluster whose centroid
is closest to it. Then move the cluster centroid closer to
the point (based on a learning rate parameter α), and move
other centroids which are connected to this centroid closer
as well.

+ Online algorithm, so can be updated as
new points come in.
- Have to deal with two metrics: one to
measure distances between observations,
one to measure distances between cen-
troids.
- Have to choose number of centroids.
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Method Description & Assumptions Pros & Cons
Linear discrim-
inant analysis
(LDA)

Supervised learning: To determine a classification rule for
observations in Rp into k groups. Idea: Assume that for
each group j, X | in group j ∼ N (µj,Σ), with the covari-
ance Σ being the same across groups. Assume marginal
probabilities P (group j) = πj.
Parameters πj, µj and Σ are estimated by maximum likeli-
hood. For new data x∗, compute the discriminant functions
logP (in group j | x∗) = log πj + (x∗)TΣ−1µj − 1

2
µTj Σ−1µj,

and classify to the group with the largest value.
Results in linear boundaries between the classes.

+ Computation is very easy.
- Model has linear boundaries: may be too
simple.
- Performance depends on the validity of
the Gaussian distribution assumption.

Reduced rank
discriminant
analysis

Idea: In LDA, the k centroids lie on an (k− 1)-dimensional
hyperplane. Projecting points onto this hyperplane does not
change the classification rule.
Let A ∈ Rp×(k−1) be the first k − 1 eigenvectors of W−1B
(defined in ESL p114, its columns span the space containing
the k centroids). After sphering the data, we can project
our points onto this space (x 7→ ATx), and assign it to the
nearest centroid (adjust for prior probabilities).
We can do even further dimensionality reduction: to con-
strain the centroids to lie on an r-dimensional hyperplane,
just take the first r columns of A.

+ Can be used as a data reduction tool.
When r = 2 or 3, we can use it for data
visualization.
- When r < k−1, we lose information when
we do the reduction.

Quadratic
discriminant
analysis (QDA)

Idea: Instead of LDA’s assumption of having the covariance
matrix being the same across groups, we allow each group
to have its own covariance matrix Σk.
Everything else is the same as LDA. Results in quadratic
boundaries between the classes.

+ More flexible model than LDA, good
when n� p.
- Many more parameters to estimate than
LDA.

Regularized dis-
criminant analy-
sis

Idea: When there is not enough data, we can regularize the
covariance matrices.
Mixture of QDA and LDA: Let Σ̂j(α) = αΣ̂ + (1 − α)Σ̂j,
where α ∈ [0, 1] is a tuning parameter.

Shrink towards identity covariance: Σ̂(α) = αIσ̂2+(1−α)Σ̂.

+ Good for situations where there is insuf-
ficient data to support LDA or QDA.
+ Good when the estimated covariance
matrices have low rank.
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Method Description & Assumptions Pros & Cons
Flexible discrim-
inant analysis

Supervised learning: to construct a classifier. Idea: If
we have k groups and n observations, construct the in-
dicator matrix Y with Yij = 1 if observation i is in
group j, 0 otherwise. Let θ1, . . . , θL : {1, . . . , k} 7→ R
be L ≤ k − 1 scoring functions which are mean 0, vari-
ance 1 and orthogonal to each other. Then the solution to
min
β,θ

∑L
`=1

∑n
i=1[θ`(gi)−xTi β`]2 has β` ∝ v`, the discriminant

variables (defined on ESL p114).
This allows us to generalize LDA in 2 ways: (a) use f`(xi)
in place of xTi β`, and (b) add a penalty term to the mini-
mization problem.

Mixture discrim-
inant analysis

Extension of LDA. Idea: Instead of assuming X |
in group j ∼ N (µj,Σ) for each group j, we assume X |
in group j ∼ mixture of normals with the same covariance
matrix (both within the group and across groups).
Model parameters can be estimated by the EM algorithm.

Canonical corre-
lation analysis
(CCA)

Given 2 random vectors x and y, find a linear combination
of entries of x and of y which maximize correlation with
each other. More concretely, if Σ11 = E[(x − µ)(x − µ)T ],
Σ22 = E[(y−ν)(y−ν)T ], Σ12 = E[(x−µ)(y−ν)T ], we want
max
a,b

aTΣ12b subject to aTΣ11a = bTΣ22b = 1.

The solution is given by the SVD of Σ∗12 = Σ
−1/2
11 Σ12Σ

−1/2
22 .

The constrained above can be modified to result in a and b
being smooth.

Classical metric
scaling

Given a distance of dissimilarity matrix D, try to find points
in Rk with distances given by D (or are close to it).

Define Aij = −1
2
D2
ij, B =

(
I − 11T

n

)
A
(
I − 11T

n

)
. Let

B = V DV T be the eigendecomposition. Then rows of Z =
VkD

1/2
k ∈ Rn×k is the solution. (Z solves minimize

X
‖B −

XXT‖F .)

+ Simple method for computing solution
that has a closed form.
+ Has an inner product interpretation: it
turns distances into inner products, then
finds a low-dimensional embedding to ap-
proximate the inner product. It minimizes
the strain SC(z1, . . . , zn) =

∑
i,i′(sii′−〈zi−

z̄, zi′ − z̄〉)2.
- Assumes Euclidean distances.

Kruskal-Shepard
metric scaling

Idea: Find a lower-dimensional representation of the data
that preserves pairwise distances as well as possible, by min-
imizing stress function S(z1, . . . , zn) =

∑
i 6=i′(dii − ‖zi −

zi′‖)2. Solved by gradient descent.

+ Works directly on distances, no need for
inner product.
- No closed form solution.
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Method Description & Assumptions Pros & Cons
Kruskal-Shepard
non-metric
scaling

Idea: Distances Dij may be far from Euclidean, but f(Dij)
may be closer for some monotone f . Seek to minimize stress

function S(z1, . . . , zn) =
∑

i 6=i′ (f(Dii′ )−‖zi−zi′‖)2∑
i 6=i′ ‖zi−zi′‖2

.

Alternating solution: Given f , use gradient descent on stress
to get zi’s. Given zi’s, find f by isotonic regression.

+ Works even if distances are far from Eu-
clidean by using only ranks.
- By the same token, only uses rank infor-
mation, so potentially throwing away in-
formation.

Isometric fea-
ture mapping
(ISOMAP)

Idea: Data actually lies on a manifold, so usual distances
are misleading. Instead, use geodesic distances along the
manifold.
For each data point, find its neighbors (e.g. k nearest neigh-
bors). Construct the neighborhood graph. Define geodesic
distance between 2 points as the shortest path between them
on this graph. Run classical metric scaling with these dis-
tances.

+ Works well when noise is small.
- Computationally expensive.
- Known to have difficulties for manifolds
with “holes”.

Local linear em-
bedding (LLE)

Idea: Each point can be approximated by a linear combina-
tion of its neighbors. Construct a lower-dimensional set of
points that preserves this relationship.
For each xi, find k nearest neighbors N (i). Approxi-
mate each point by a mixture of points in the neigh-
borhood: min

w
‖xi −

∑
k∈N (i)wikxk‖2. Then, find points

y1, . . . yn in lower-dimensional space to minimize
∑n

i=1 ‖yi−∑
k∈N (i) wikyk‖2. The solution turns out to be the trailing

eigenvectors of M = (I −W )T (I −W ) (ignoring the trivial
eigenvector 1).

+ Preserves local structure well.
+ Less computationally expensive than
ISOMAP.
- Does not preserve global structure as
well.
- Known to have difficulty on non-convex
manifolds.

Local MDS Idea: Try to match local distances well; for points that are
far apart, approximate distance by some large D (encour-
ages them to be far apart). This is done by minimizing the
local stress function S(z1, . . . , zn) =

∑
(i,i′)∈N(dii′ − ‖zi −

zi′‖)2 +
∑

(i,i′)/∈N w · (D− ‖zi − zi′‖)2, where N is the set of
pairs of points which are considered close.
For the problem to scale well, we need w ∼ 1/D as D →∞.
When this happens, we have S(z1, . . . , zn) =

∑
(i,i′)∈N(dii′−

‖zi − zi′‖)2 + τ
∑

(i,i′)/∈N ‖zi − zi′‖, where τ = 2wD.

+ Most straightforward (compared to
ISOMAP and LLE).
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Method Description & Assumptions Pros & Cons
Spectral cluster-
ing

Start with a similarity/weight matrix W ∈ Rn (ones on the
diagonal). Let G be a diagonal matrix with Gii = sum of
weights of edges connected to i. Find the m eigenvectors
Z ∈ Rn×m corresponding to the smallest eigenvalues of L̃ =
I−G−1W . Then apply an unsupervised learning procedure
(e.g. k-means clustering) to the rows of Z.
Idea: For unnormalized L = G − W , we can show that
1
2

∑
i,i′ wii′(fi− fi′)2 = fTLf . If we think of fi as a score for

observation i, then we want (fi− fi′)2 to be small when wii′
is large. This amounts to minimizing fTLf .

+ Good for finding non-convex clusters.
- We have to choose the measure of sim-
ilarity with its associated parameters, the
number of eigenvectors of L̃ and any pa-
rameters for the final clustering step.
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