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Given n observations, find some k < n prototypes/objects to represent them (or their variation). Sometimes this amounts
to fitting a low-dimensional surface to the observations.

— General algorithms: principal components analysis (PCA), factor analysis, projection pursuit, independent compo-
nent analysis (ICA), principal curves and surfaces

— Rows in contingency tables: correspondence analysis
Matrix completion: Hard Impute, Soft Impute
Classification: Discriminant analysis (all versions)
Given distances/dissimilarities/similarities, find some lower-dimensional embedding that preserves this structure:

— General algorithms: classical metric scaling, Kruskal-Shepard metric scaling, Kruskal-Shepard non-metric scaling.

— Focus on local structure: isometric feature mapping (ISOMAP), local linear embedding (LLE), local MDS

Unsupervised clustering: k-nearest neighbors, k-means, self-organizing maps (SOM), spectral clustering



Method

Description & Assumptions

Pros & Cons

Gaussian
las

copu-

Idea: Want to draw samples from some multivariate dis-
tribution F' that has marginals Fi,..., F,. We can use a
multivariate Gaussian to do so in a way that respects the
marginal distributions and the correlations between the fea-
tures.

We assume Z ~ N, (0, R), where R is some correlation ma-
trix. Set X; = F]-_1(<I>(Zj)). Then (Xi,...,X,) will have
the desired marginals with some correlation between the
features.

- Have to estimate R. Also, R gives corre-
lation between the Z;’s, not the X;’s.

Principal  com-

ponents analysis
(PCA)

Dimensionality reduction method. Idea: Think of observa-
tions as points in R?. For a given k, find the top k orthogonal
directions along which the observations vary the most.
This can be accomplished simply by taking an SVD of the
data matrix: if X = UDVT, then the first & PCs are given
by UpDy, and the first k£ loading vectors are given by V.

+ Easy to compute

+ Makes intuitive sense as a dimensional-
ity reduction tool.

- PCs are in general linear combinations
of all p original features, so not sparse in
original feature space. (This can be fixed
by using sparse PCA methods.)

- How to choose the number of PCs?

Hard Impute

For matrix completion with missing entries. Let €2 denote
the set of entries of X that are observed. Idea: Assume some

low rank structure, minimize Frobenius norm over observed

tries: i Po(X) — Por(2)||p.
entries raLnIkI(lg)l:L || Q( ) Qi( )HF

[terative algorithm: Initialize by randomly filling in the
missing entries. In each iteration, take the rank-L SVD
of the most updated X matrix, then update the missing
entries in X with the entries from this rank-L SVD.

+ Fast algorithm.

- Assumes low rank structure.

- Objective function is non-convex, so al-
gorithm is not guaranteed to converge to a
global minimum.

Soft Impute

Idea: Solve a convex relaxation of the minimization problem

for Hard Impute instead: 1{(1(121)1 5 | Po(X) — Poi(Z)]% +
M| Z]|«, where || - ||+ denotes the nuclear norm.

Algorithm is basically the same as Hard Impute, except
instead of taking the rank-L SVD Z! = U, D V{, take
ZH = ULS(D,\) LV, where S(d, \) = (d — \) 4.

+ Problem is convex and so we can prove
convergence.

- Not the objective function that we really
want.
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Graphical
LASSO

Assume that the variables Xi,..., X, are jointly Gaussian
with joint density X ~ AN (1, X). Let © = Y71 In this
set-up, X; and X are conditionally independent iff ©;; = 0.
Idea:  Estimate conditional dependence structure of
data by wusing [L; regularization of the log-likelihood:
max logdet © — tr(S©) — A||O||1, where S is the sample

covariance.

Factor analysis

Idea: Produce a small set of factors which explain the corre-
lations among the given variables. The model is X = A f+e,
where X represents the observed variables, e € RP repre-
sents the unique factors for each variable, f € R? represents
the common factors, and A € RP*? represents the factor
loadings.

By considering the covariances, we get > = Cov(X) =
AAT + U, where ¥ = Cov(e) = diag(t1,...,1,). Various
methods are used to estimate A and V.

+ There are factor analysis methods that
do not have any distributional assumptions
(e.g. principal factor method); they just
work on correlations.

- For any decomposition A and ¥, VA and
U (with V' € R?*9 orthonormal) give an
equivalent model. Hence, there is an in-
herent non-uniqueness for factor analysis.

Projection pur-
suit

Idea: For multivariate random vector y, most projections
aly (with ||l = 1) look “normal”. We try to find projec-
tions which are “non-normal”. These projections can show
us some of the structure of teh data.

Defining entropy as I(f) = —E¢[log f], the more random
or uniform a distribution, the higher the entropy. Thus, we
want to find a such that I(a”y) is minimized.

Friedman formulates the problem as maximizing a
quantity representing departure from uniform instead:

IIH\\linl [1[Pr(r) — 1/2]%dr, where Py is the density of
a||l2=

R=2®(ay) — 1.

Independent
component

analysis (ICA)

Idea: Our data X is really a linear transformation of sources
S, X = AS, with the elements of S being independent and
non-Gaussian. A is known as the mixing matrix. Our goal
is to estimate A and the distributions of the S;’s.

Usually solved using entropy H and mutual information
1Y) =>20_ H(Y;) = H(Y). We want to find A that mini-
mizes I (AT X). There is also an alternating algorithm (Pro-
DenICA) using tilted Gaussian densities.

+ Unlike factor analysis, there is a unique
solution.




Method Description & Assumptions Pros & Cons
Correspondence | Idea: Try to perform PCA for J x K contingency tables.
analysis After normalizing by row totals, each row is a “profile” in

the simplex in R* (entries sum to 1). We want to find a
subspace that approximates the rows well in the appropriate
metric.

The solution to this problem ends up being the generalized
SVD.

Principal curves

Goal is to find a low-dimensional manifold which approxi-

+ Typically used for data visualization (2D

& surfaces mates the data well. Idea: PCA solves min Y | [lz;—(ap+ | & 3D).
V:)||?. Instead of approximating with a linear manifold,
approximate by a smooth manifold: I}lin S = ()3,
where f belongs to some smooth famﬁy.
Solve using an iterative algorithm: For fixed f, for each
i pick v; to minimize ||x; — f(7;)||. For fixed v;’s, model
zij = fi() + €.
K-means  clus- | Idea: minimize the within-cluster scatter: | + Easy to implement.
tering S > ociiy=k T — Tx||?, where C(i) is the cluster | - Solution depends on starting configura-

membership for observation .

Can be solved iteratively: Given centroids, assign each ob-
servation to its closest centroid. Given assignments, recom-
pute centroid locations.

tion (only local optimum reached).
- How to choose K7

Self-organizing
maps (SOM)

An online version of K-means, where the centroids are some-
what constrained.

As points come in, add point to the cluster whose centroid
is closest to it. Then move the cluster centroid closer to
the point (based on a learning rate parameter «), and move
other centroids which are connected to this centroid closer
as well.

+ Online algorithm, so can be updated as
new points come in.

- Have to deal with two metrics: one to
measure distances between observations,
one to measure distances between cen-
troids.

- Have to choose number of centroids.
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Linear discrim-
inant  analysis

(LDA)

Supervised learning: To determine a classification rule for
observations in R” into k£ groups. Idea: Assume that for
each group j, X | in group j ~ N(u;, X), with the covari-
ance Y being the same across groups. Assume marginal
probabilities P(group j) = ;.

Parameters 7, ; and X are estimated by maximum likeli-
hood. For new data x*, compute the discriminant functions
log P(in group j | %) = logm; + (¢*)"S ™ p; — Sl 571y,
and classify to the group with the largest value.

Results in linear boundaries between the classes.

+ Computation is very easy.

- Model has linear boundaries: may be too
simple.

- Performance depends on the validity of
the Gaussian distribution assumption.

Reduced rank

discriminant
analysis

Idea: In LDA, the k centroids lie on an (k — 1)-dimensional
hyperplane. Projecting points onto this hyperplane does not
change the classification rule.

Let A € RP*(=1) be the first k — 1 eigenvectors of W~!B
(defined in ESL p114, its columns span the space containing
the k centroids). After sphering the data, we can project
our points onto this space (z — ATx), and assign it to the
nearest centroid (adjust for prior probabilities).

We can do even further dimensionality reduction: to con-
strain the centroids to lie on an r-dimensional hyperplane,
just take the first r columns of A.

+ Can be used as a data reduction tool.
When r = 2 or 3, we can use it for data
visualization.

- When r < k—1, we lose information when
we do the reduction.

Quadratic
discriminant

analysis (QDA)

Idea: Instead of LDA’s assumption of having the covariance
matrix being the same across groups, we allow each group
to have its own covariance matrix .

Everything else is the same as LDA. Results in quadratic
boundaries between the classes.

+ More flexible model than LDA, good
when n > p.

- Many more parameters to estimate than
LDA.

Regularized dis-
criminant analy-
sis

Idea: When there is not enough data, we can regularize the
covariance matrices. R R R
Mixture of QDA and LDA: Let ¥;(a) = aX + (1 — o),
where a € [0, 1] is a tuning parameter.

Shrink towards identity covariance: S(a) = alé2+(1—a)3.

+ Good for situations where there is insuf-
ficient data to support LDA or QDA.

+ Good when the estimated covariance
matrices have low rank.
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Flexible discrim-
inant analysis

Supervised learning: to construct a classifier. Idea: If
we have k groups and n observations, construct the in-
dicator matrix Y with Y;; = 1 if observation ¢ is in
group j, 0 otherwise. Let 6q,...,0, : {1,...,k} — R
be L < k — 1 scoring functions which are mean 0, vari-
ance 1 and orthogonal to each other. Then the solution to
Hﬁlien S ST 66(9i) — 2T Be)? has By o vy, the discriminant

variables (defined on ESL p114).

This allows us to generalize LDA in 2 ways: (a) use fy(x;)
in place of z! 8, and (b) add a penalty term to the mini-
mization problem.

Mixture discrim-
inant analysis

Extension of LDA. Idea: Instead of assuming X |
in group j ~ N(u;, %) for each group j, we assume X |
in group j ~ mixture of normals with the same covariance
matrix (both within the group and across groups).

Model parameters can be estimated by the EM algorithm.

Canonical corre-
lation  analysis

(CCA)

Given 2 random vectors x and y, find a linear combination
of entries of x and of y which maximize correlation with
each other. More concretely, if ¥y, = E[(z — p)(z — p)7],
Yap = E[(y —v)(y —v)"], 1o = E[(z — p)(y —v)"], we want
max a’ X120 subject to a’ Xi1a = b7 900 = 1.

a,b
The solution is given by the SVD of 3%, = %7,"/*S1555,7%.
The constrained above can be modified to result in a¢ and b
being smooth.

Classical metric
scaling

Given a distance of dissimilarity matrix D, try to find points
in R* with distances given by D (or are close to it).

Define Ay = ~4D%, B = (1-15)A(1- 1), Let

B = VDVT be the eigendecomposition. Then rows of Z =
VkD,i/ > € R™* is the solution. (Z solves mini;nize |B —

XXT|p.)

+ Simple method for computing solution
that has a closed form.

+ Has an inner product interpretation: it
turns distances into inner products, then
finds a low-dimensional embedding to ap-
proximate the inner product. It minimizes
the strain S¢(21,...,2,) = Zm,(sii/ —(z—
Z, 20 — 2))2.

- Assumes Euclidean distances.

Kruskal-Shepard
metric scaling

Idea: Find a lower-dimensional representation of the data
that preserves pairwise distances as well as possible, by min-
imizing stress function S(z,...,z,) = Zi;ﬁi/(dii — |z —

+ Works directly on distances, no need for
inner product.
- No closed form solution.
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Kruskal-Shepard | Idea: Distances D;; may be far from Euclidean, but f(D;;) | + Works even if distances are far from Eu-

non-metric may be closer for some monotone f. Seek to minimize stress | clidean by using only ranks.

scaling function S(z1, ..., 2,) = Zi;ﬁi/z(:f ([ii|i|’z):||j[;i/”)2. - By the same token, only uses rank infor-
Alternating solution: Given f, ;fsle gzraczlient descent on stress mat10n., so potentially throwing away in-
to get z;’s. Given z;’s, find f by isotonic regression. formation.

[sometric  fea- | Idea: Data actually lies on a manifold, so usual distances | + Works well when noise is small.

ture mapping | are misleading. Instead, use geodesic distances along the | - Computationally expensive.

(ISOMAP) manifold. - Known to have difficulties for manifolds

For each data point, find its neighbors (e.g. k nearest neigh-
bors). Construct the neighborhood graph. Define geodesic
distance between 2 points as the shortest path between them
on this graph. Run classical metric scaling with these dis-
tances.

with “holes”.

Local linear em-

bedding (LLE)

Idea: Each point can be approximated by a linear combina-
tion of its neighbors. Construct a lower-dimensional set of
points that preserves this relationship.

For each z;, find k nearest neighbors N(i). Approxi-
mate each point by a mixture of points in the neigh-
borhood: rrgn”xz = D kN () wirzk||?>.  Then, find points
Y1, ... Y, in lower-dimensional space to minimize Y ", ||y; —
> keni) Winykll?. The solution turns out to be the trailing
eigenvectors of M = (I — W)T(I — W) (ignoring the trivial
eigenvector 1).

+ Preserves local structure well.

+ Less computationally expensive than
ISOMAP.

- Does not preserve global structure as
well.

- Known to have difficulty on non-convex
manifolds.

Local MDS

Idea: Try to match local distances well; for points that are
far apart, approximate distance by some large D (encour-
ages them to be far apart). This is done by minimizing the
local2 stress function S(z1,...,2,) j > inen(div — |1z —
zi/”) + Z(.m.,)%Nw. (D — ||z - zi||)?, where N is the set of
pairs of points which are considered close.

For the problem to scale well, we need w ~ 1/D as D — co.
When this happens, we have S(z1, ..., 2,) = 32 inen(div —
120 = 20 l1)? + 7 3 inen 12 — zill, where 7 = 2wD.

+ Most straightforward (compared to
ISOMAP and LLE).
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Spectral cluster-
ing

Start with a similarity /weight matrix W € R™ (ones on the
diagonal). Let G be a diagonal matrix with G;; = sum of
weights of edges connected to i. Find the m eigenvectors
Z € R™™ corresponding to the smallest eigenvalues of L =
I —G~'W. Then apply an unsupervised learning procedure
(e.g. k-means clustering) to the rows of Z.

Idea: For unnormalized L = G — W, we can show that
5 2iq Wi (fi = fi)? = fTLf. 1f we think of f; as a score for
observation 7, then we want (f; — fi)? to be small when w;;
is large. This amounts to minimizing f7Lf.

+ Good for finding non-convex clusters.

- We have to choose the measure of sim-
ilarity with its associated parameters, the
number of eigenvectors of L and any pa-
rameters for the final clustering step.




