Tools in Multivariate Analysis

Kenneth Tay

Jul 18, 2018

- Given n observations, find some $k \ll n$ prototypes/objects to represent them (or their variation). Sometimes this amounts to fitting a low-dimensional surface to the observations.
 - General algorithms: principal components analysis (PCA), factor analysis, projection pursuit, independent component analysis (ICA), principal curves and surfaces
 - Rows in contingency tables: correspondence analysis
- Matrix completion: Hard Impute, Soft Impute
- Classification: Discriminant analysis (all versions)
- Given distances/dissimilarities/similarities, find some lower-dimensional embedding that preserves this structure:
 - General algorithms: classical metric scaling, Kruskal-Shepard metric scaling, Kruskal-Shepard non-metric scaling.
 - Focus on local structure: isometric feature mapping (ISOMAP), local linear embedding (LLE), local MDS
- Unsupervised clustering: k-nearest neighbors, k-means, self-organizing maps (SOM), spectral clustering

Method	Description & Assumptions	Pros & Cons
Gaussian copu-	Idea: Want to draw samples from some multivariate dis-	- Have to estimate R . Also, R gives corre-
las	tribution F that has marginals F_1, \ldots, F_p . We can use a	lation between the Z_j 's, not the X_j 's.
	multivariate Gaussian to do so in a way that respects the	
	furge	
	We assume $Z \sim N(0, R)$ where R is some correlation ma-	
	trix. Set $X_i = F_i^{-1}(\Phi(Z_i))$. Then (X_1, \ldots, X_n) will have	
	the desired marginals with some correlation between the	
	features.	
Principal com-	Dimensionality reduction method. Idea: Think of observa-	+ Easy to compute
ponents analysis	tions as points in \mathbb{R}^p . For a given k, find the top k orthogonal	+ Makes intuitive sense as a dimensional-
(PCA)	directions along which the observations vary the most.	ity reduction tool.
	This can be accomplished simply by taking an SVD of the $\frac{1}{2}$	- PCs are in general linear combinations
	data matrix: if $X = UDV^{T}$, then the first k PCs are given	of all p original features, so not sparse in
	by $U_k D_k$, and the first k loading vectors are given by V_k .	original feature space. (This can be fixed
		By using sparse PCA methods.)
Hard Impute	For matrix completion with missing entries Let Ω denote	+ Fast algorithm
	the set of entries of X that are observed. Idea: Assume some	- Assumes low rank structure.
	low rank structure. minimize Frobenius norm over observed	- Objective function is non-convex. so al-
	entries: $\min_{X \in \Omega^{\perp}} \ P_{\Omega}(X) - P_{\Omega^{\perp}}(Z)\ _{F}.$	gorithm is not guaranteed to converge to a
	$\operatorname{rank}(Z)=L$ Iterative algorithm: Initialize by randomly filling in the	global minimum.
	missing entries. In each iteration, take the rank- L SVD	
	of the most updated X matrix, then update the missing	
	entries in X with the entries from this rank- L SVD.	
Soft Impute	Idea: Solve a convex relaxation of the minimization problem	+ Problem is convex and so we can prove
	for Hard Impute instead: $\min_{\operatorname{rank}(Z)=L} \ P_{\Omega}(X) - P_{\Omega^{\perp}}(Z)\ _{F}^{2} +$	convergence.
	$\lambda \ Z\ _*$, where $\ \cdot\ _*$ denotes the nuclear norm.	- Not the objective function that we really
	Algorithm is basically the same as Hard Impute, except	want.
	instead of taking the rank-L SVD $Z^{i+1} = U_L D_L V_L^T$, take	
	$Z^{i+1} = U_L \mathcal{S}(D, \lambda)_L V_L^T$, where $\mathcal{S}(d, \lambda) = (d - \lambda)_+$.	

Method	Description & Assumptions	Pros & Cons
Graphical	Assume that the variables X_1, \ldots, X_p are jointly Gaussian	
LASSO	with joint density $X \sim \mathcal{N}(\mu, \Sigma)$. Let $\Theta = \Sigma^{-1}$. In this	
	set-up, X_i and X_j are conditionally independent iff $\Theta_{ij} = 0$.	
	Idea: Estimate conditional dependence structure of	
	data by using L_1 regularization of the log-likelihood:	
	$\max_{\Theta} \log \det \Theta - \operatorname{tr}(S\Theta) - \lambda \ \Theta\ _1, \text{ where } S \text{ is the sample}$	
	covariance.	
Factor analysis	Idea: Produce a small set of factors which explain the corre-	+ There are factor analysis methods that
	lations among the given variables. The model is $X = \Lambda f + e$,	do not have any distributional assumptions
	where X represents the observed variables, $e \in \mathbb{R}^p$ repre-	(e.g. principal factor method); they just
	sents the unique factors for each variable, $f \in \mathbb{R}^q$ represents	work on correlations.
	the common factors, and $\Lambda \in \mathbb{R}^{p \times q}$ represents the factor	- For any decomposition Λ and Ψ , $V\Lambda$ and
	loadings.	Ψ (with $V \in \mathbb{R}^{q \times q}$ orthonormal) give an
	By considering the covariances, we get $\Sigma = \text{Cov}(X) =$	equivalent model. Hence, there is an in-
	$\Lambda \Lambda^{I} + \Psi$, where $\Psi = \text{Cov}(e) = \text{diag}(\psi_{1}, \dots, \psi_{p})$. Various	herent non-uniqueness for factor analysis.
	methods are used to estimate Λ and Ψ .	
Projection pur-	Idea: For multivariate random vector y , most projections	
suit	$\alpha^{T} y$ (with $\ \alpha\ _{2} = 1$) look "normal". We try to find projection	
	tions which are "non-normal". These projections can show	
	us some of the structure of teh data.	
	Defining entropy as $I(f) = -\mathbb{E}_f[\log f]$, the more random	
	or uniform a distribution, the higher the entropy. Thus, we	
	want to find α such that $I(\alpha^2 y)$ is infinitized.	
	quantity representing departure from uniform instead:	
	min $\int_{-\infty}^{1} [P_{-}(r) - 1/2]^2 dr$ where P_{-} is the density of	
	$\lim_{\ \alpha\ _2=1} J_{-1}[I_R(I) - I/2] \alpha I, \text{ where } I_R \text{ is the density of}$	
	$R = 2\Phi(\alpha^T y) - 1.$	
Independent	Idea: Our data X is really a linear transformation of sources	+ Unlike factor analysis, there is a unique
component	S, X = AS, with the elements of S being independent and	solution.
analysis (ICA)	non-Gaussian. A is known as the mixing matrix. Our goal	
	is to estimate A and the distributions of the S_j 's.	
	Usually solved using entropy H and mutual information	
	$I(Y) = \sum_{j=1}^{r} H(Y_j) - H(Y)$. We want to find A that mini-	
	mizes $I(A^{t}X)$. There is also an alternating algorithm (Pro-	
	DenICA) using tilted Gaussian densities.	

Method	Description & Assumptions	Pros & Cons
Correspondence	Idea: Try to perform PCA for $J \times K$ contingency tables.	
analysis	After normalizing by row totals, each row is a "profile" in	
	the simplex in \mathbb{R}^{K} (entries sum to 1). We want to find a	
	subspace that approximates the rows well in the appropriate	
	metric.	
	The solution to this problem ends up being the generalized	
	SVD.	
Principal curves	Goal is to find a low-dimensional manifold which approxi-	+ Typically used for data visualization (2D
& surfaces	mates the data well. Idea: PCA solves min $\sum_{i=1}^{n} x_i - (\alpha_0 + \alpha_0) $	& 3D).
	$ V\gamma_i) ^2$. Instead of approximating with a linear manifold,	
	approximate by a smooth manifold: $\min_{f \gamma_i} \sum_{i=1}^n \ x_i - f(\gamma_i)\ ^2$,	
	where f belongs to some smooth family.	
	Solve using an iterative algorithm: For fixed f , for each	
	i pick γ_i to minimize $ x_i - f(\gamma_i) $. For fixed γ_i 's, model	
	$x_{ij} = f_j(\gamma_i) + \epsilon_{ij}.$	
K-means clus-	Idea: minimize the within-cluster scatter:	+ Easy to implement.
tering	$\sum_{k=1}^{K} \sum_{C(i)=k} x_i - \bar{x}_k ^2$, where $C(i)$ is the cluster	- Solution depends on starting configura-
	membership for observation i .	tion (only local optimum reached).
	Can be solved iteratively: Given centroids, assign each ob-	- How to choose K ?
	servation to its closest centroid. Given assignments, recom-	
	pute centroid locations.	
Self-organizing	An online version of K -means, where the centroids are some-	+ Online algorithm, so can be updated as
maps (SOM)	what constrained.	new points come in.
	As points come in, add point to the cluster whose centroid	- Have to deal with two metrics: one to
	is closest to it. Then move the cluster centroid closer to	measure distances between observations,
	the point (based on a learning rate parameter α), and move	one to measure distances between cen-
	other centroids which are connected to this centroid closer	troids.
	as well.	- Have to choose number of centroids.

Method	Description & Assumptions	Pros & Cons
Linear discrim-	Supervised learning: To determine a classification rule for	+ Computation is very easy.
inant analysis	observations in \mathbb{R}^p into k groups. Idea: Assume that for	- Model has linear boundaries: may be too
(LDA)	each group $j, X \mid$ in group $j \sim \mathcal{N}(\mu_j, \Sigma)$, with the covari-	simple.
	ance Σ being the same across groups. Assume marginal	- Performance depends on the validity of
	probabilities $P(\text{group } j) = \pi_j$.	the Gaussian distribution assumption.
	Parameters π_j , μ_j and Σ are estimated by maximum likeli-	
	hood. For new data x^* , compute the discriminant functions	
	$\log P(\text{in group } j \mid x^*) = \log \pi_j + (x^*)^T \Sigma^{-1} \mu_j - \frac{1}{2} \mu_j^T \Sigma^{-1} \mu_j,$	
	and classify to the group with the largest value.	
	Results in linear boundaries between the classes.	
Reduced rank	Idea: In LDA, the k centroids lie on an $(k-1)$ -dimensional	+ Can be used as a data reduction tool.
discriminant	hyperplane. Projecting points onto this hyperplane does not	When $r = 2$ or 3, we can use it for data
analysis	change the classification rule.	visualization.
	Let $A \in \mathbb{R}^{p \times (k-1)}$ be the first $k-1$ eigenvectors of $W^{-1}B$	- When $r < k-1$, we lose information when
	(defined in ESL p114, its columns span the space containing	we do the reduction.
	the k centroids). After sphering the data, we can project	
	our points onto this space $(x \mapsto A^T x)$, and assign it to the	
	nearest centroid (adjust for prior probabilities).	
	We can do even further dimensionality reduction: to con-	
	strain the centroids to lie on an r -dimensional hyperplane,	
	just take the first r columns of A .	
Quadratic	Idea: Instead of LDA's assumption of having the covariance	+ More flexible model than LDA, good
discriminant	matrix being the same across groups, we allow each group	when $n \gg p$.
analysis (QDA)	to have its own covariance matrix Σ_k .	- Many more parameters to estimate than
	Everything else is the same as LDA. Results in quadratic	LDA.
	boundaries between the classes.	
Regularized dis-	Idea: When there is not enough data, we can regularize the	+ Good for situations where there is insuf-
criminant analy-	covariance matrices.	ficient data to support LDA or QDA.
sis	Mixture of QDA and LDA: Let $\Sigma_j(\alpha) = \alpha \Sigma + (1 - \alpha) \Sigma_j$,	+ Good when the estimated covariance
	where $\alpha \in [0, 1]$ is a tuning parameter.	matrices have low rank.
	Shrink towards identity covariance: $\widehat{\Sigma}(\alpha) = \alpha I \hat{\sigma}^2 + (1-\alpha) \widehat{\Sigma}$.	

Method	Description & Assumptions	Pros & Cons
Flexible discrim-	Supervised learning: to construct a classifier. Idea: If	
inant analysis	we have k groups and n observations, construct the in-	
	dicator matrix Y with $Y_{ij} = 1$ if observation i is in	
	group j, 0 otherwise. Let $\theta_1, \ldots, \theta_L$: $\{1, \ldots, k\} \mapsto \mathbb{R}$	
	be $L \leq k - 1$ scoring functions which are mean 0, vari-	
	ance 1 and orthogonal to each other. Then the solution to	
	$\lim_{\beta,\theta} \sum_{\ell=1}^{L} \sum_{i=1}^{n} [\theta_{\ell}(g_i) - x_i^T \beta_{\ell}]^2 \text{ has } \beta_{\ell} \propto v_{\ell}, \text{ the discriminant}$	
	variables (defined on ESL p114).	
	This allows us to generalize LDA in 2 ways: (a) use $f_{\ell}(x_i)$	
	in place of $x_i^T \beta_\ell$, and (b) add a penalty term to the mini-	
	mization problem.	
Mixture discrim-	Extension of LDA. Idea: Instead of assuming X	
inant analysis	in group $j \sim \mathcal{N}(\mu_j, \Sigma)$ for each group j , we assume $X \mid$	
	in group $j \sim$ mixture of normals with the same covariance	
	matrix (both within the group and across groups).	
	Model parameters can be estimated by the EM algorithm.	
Canonical corre-	Given 2 random vectors x and y , find a linear combination	
lation analysis	of entries of x and of y which maximize correlation with	
(CCA)	each other. More concretely, if $\Sigma_{11} = \mathbb{E}[(x - \mu)(x - \mu)^T]$,	
	$\sum_{22} = \mathbb{E}[(y-\nu)(y-\nu)^{T}], \sum_{12} = \mathbb{E}[(x-\mu)(y-\nu)^{T}], \text{ we want}$	
	$\max_{a,b} a^T \Sigma_{12} b \text{ subject to } a^T \Sigma_{11} a = b^T \Sigma_{22} b = 1.$	
	The solution is given by the SVD of $\Sigma_{12}^* = \Sigma_{11}^{-1/2} \Sigma_{12} \Sigma_{22}^{-1/2}$.	
	The constrained above can be modified to result in a and b	
	being smooth.	
Classical metric	Given a distance of dissimilarity matrix D , try to find points	+ Simple method for computing solution
scaling	in \mathbb{R}^k with distances given by D (or are close to it).	that has a closed form.
	Define $A_{ij} = -\frac{1}{2}D_{ij}^2$, $B = (I - \frac{11^T}{n})A(I - \frac{11^T}{n})$. Let	+ Has an inner product interpretation: it
	$B = VDV^T$ be the eigendecomposition. Then rows of $Z =$	turns distances into inner products, then
	$V_k D_k^{1/2} \in \mathbb{R}^{n \times k}$ is the solution. (Z solves minimize $ B - A $	finds a low-dimensional embedding to ap-
	$\begin{pmatrix} & \kappa \\ & \mathbf{V} \mathbf{V}^T \\ \end{pmatrix}$	proximate the inner product. It minimizes $\sum_{i=1}^{n} \frac{1}{i} \frac{1}{i$
	$ \Lambda \Lambda F \cdot)$	$\lim_{z \to -\infty} S_C(z_1, \dots, z_n) = \sum_{i,i'} (s_{ii'} - \langle z_i - z_i \rangle)^2$
		$ \bar{z}, z_{i'} - \bar{z}\rangle)^2$.
		- Assumes Euclidean distances.
Kruskal-Shepard	Idea: Find a lower-dimensional representation of the data	+ works directly on distances, no need for
metric scaling	that preserves pairwise distances as well as possible, by min-	Inner product.
	Imizing stress function $S(z_1, \ldots, z_n) = \sum_{i \neq i'} (d_{ii} - z_i - z_n)$	- No closed form solution.

Method	Description & Assumptions	Pros & Cons
Kruskal-Shepard	Idea: Distances D_{ij} may be far from Euclidean, but $f(D_{ij})$	+ Works even if distances are far from Eu-
non-metric	may be closer for some monotone f . Seek to minimize stress	clidean by using only ranks.
scaling	function $S(z_1, \dots, z_n) = \frac{\sum_{i \neq i'} (f(D_{ii'}) - z_i - z_{i'})^2}{\sum_{i \neq i'} z_i - z_{i'} ^2}.$	- By the same token, only uses rank infor-
	Alternating solution: Given f , use gradient descent on stress	mation, so potentially throwing away in-
	to get z_i 's. Given z_i 's, find f by isotonic regression.	formation.
Isometric fea-	Idea: Data actually lies on a manifold, so usual distances	+ Works well when noise is small.
ture mapping	are misleading. Instead, use geodesic distances along the	- Computationally expensive.
(ISOMAP)	manifold.	- Known to have difficulties for manifolds
	For each data point, find its neighbors (e.g. k nearest neigh-	with "holes".
	bors). Construct the neighborhood graph. Define geodesic	
	distance between 2 points as the shortest path between them	
	on this graph. Run classical metric scaling with these dis-	
	tances.	
Local linear em-	Idea: Each point can be approximated by a linear combina-	+ Preserves local structure well.
bedding (LLE)	tion of its neighbors. Construct a lower-dimensional set of	+ Less computationally expensive than
	points that preserves this relationship.	ISOMAP.
	For each x_i , find k nearest neighbors $\mathcal{N}(i)$. Approxi-	- Does not preserve global structure as
	mate each point by a mixture of points in the neigh-	well.
	borhood: $\min_{w} x_i - \sum_{k \in \mathcal{N}(i)} w_{ik} x_k ^2$. Then, find points	- Known to have difficulty on non-convex
	y_1, \ldots, y_n in lower-dimensional space to minimize $\sum_{i=1}^n y_i - y_i $	manifolds.
	$\sum_{k \in \mathcal{N}(i)} w_{ik} y_k \ ^2$. The solution turns out to be the trailing	
	eigenvectors of $M = (I - W)^T (I - W)$ (ignoring the trivial	
	eigenvector 1).	
Local MDS	Idea: Try to match local distances well; for points that are	+ Most straightforward (compared to
	far apart, approximate distance by some large D (encour-	ISOMAP and LLE).
	ages them to be far apart). This is done by minimizing the	
	local stress function $S(z_1, \ldots, z_n) = \sum_{(i,i') \in N} (d_{ii'} - z_i - z_i)$	
	$ z_{i'})^2 + \sum_{(i,i') \notin N} w \cdot (D - z_i - z_{i'})^2$, where N is the set of	
	pairs of points which are considered close.	
	For the problem to scale well, we need $w \sim 1/D$ as $D \to \infty$.	
	When this happens, we have $S(z_1, \ldots, z_n) = \sum_{(i,i') \in N} (d_{ii'} - d_{ii'})$	
	$ z_i - z_{i'})^2 + \tau \sum_{(i,i') \notin N} z_i - z_{i'} $, where $\tau = 2wD$.	

Method	Description & Assumptions	Pros & Cons
Spectral cluster-	Start with a similarity/weight matrix $W \in \mathbb{R}^n$ (ones on the	+ Good for finding non-convex clusters.
ing	diagonal). Let G be a diagonal matrix with $G_{ii} = \text{sum of}$	- We have to choose the measure of sim-
	weights of edges connected to i . Find the m eigenvectors	ilarity with its associated parameters, the
	$Z \in \mathbb{R}^{n \times m}$ corresponding to the smallest eigenvalues of $\tilde{L} =$	number of eigenvectors of \tilde{L} and any pa-
	$I - G^{-1}W$. Then apply an unsupervised learning procedure	rameters for the final clustering step.
	(e.g. k -means clustering) to the rows of Z .	
	Idea: For unnormalized $L = G - W$, we can show that	
	$\frac{1}{2}\sum_{i,i'} w_{ii'}(f_i - f_{i'})^2 = f^T L f$. If we think of f_i as a score for	
	observation <i>i</i> , then we want $(f_i - f_{i'})^2$ to be small when $w_{ii'}$	
	is large. This amounts to minimizing $f^T L f$.	