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Runtimes cheat sheet

Let A be a d1 × d2 matrix, let B be a d2 × d3 matrix, and let v1 and v2 be vectors of
dimension d1 and d2, respectively.

• Computing AB takes O(d1d2d3) operations.

• Computing the QR factorization of A takes O(d21d2) operations. This is only
defined for d1 > d2.

• Computing the SVD of A takes O(d1d2min(d1, d2)) operations.

• For A symmetric, computing the eigendecomposition takes O(d31) operations.

• For A square, computing A−1 takes O(d31) operations.

• For A square, solving Ax = v1 for x takes O(d31) operations.

Matrix solves

A common task in numerical linear algebra is to find a solution x to the equation
Ax = v1, for a square matrix A. For example, to compute a least-squares fit, we
compute (XTX)−1XTy, which requires one matrix solve. Since A−1 can be computed
in O(d31) operations, we know that solve Ax = v1 can be down in O(d31) operations.

In practice, however, one does not solve Ax = v1 for x by computing the inverse
matrix A−1, because there are faster and more numerically stable alternatives. These
alternatives still require O(d31) operations, but the constants are more favorable. Two
techniques are commonly used. The general-purpose solution is to first compute the
QR factorization, and then with A = QR, solving Rx = QTv1 can be done quickly,
since solving upper triangular systems only takes O(d21) time. As an alternative, if A is
PSD, such as in the linear regression case, we use the Cholesky factorization A = LLT

where L is an lower triangular matrix. To solve Ax = v1, we then solve two triangular
systems Lz = v1 for z and then LTx = z for x. The Cholesky decomposition is faster
than the QR method, but only applies when A is PSD.
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QR decomposition

The QR decomposition takes the following form:

A = QR,

where Q is d1 × d2 with orthogonal columns, and R is upper triangular.

Cholesky decomposition

For a PSD matrix A, the Cholesky decomposition takes the following form:

A = LLT

where L is a d1 × d1 lower triangular matrix.

SVD and eigendecomposition

The SVD is the most important factorization for statistics, and it takes the following
form:

A = UDV T ,

where U is d1 × r with orthogonal columns, D is r × r diagonal with positive entries
decreasing along the diagonal, V is d2 × r with orthogonal columns, and r is the
rank of A. The SVD exists for any matrix A. Computing the SVD is done by
first computing the ATA and then taking the eigendecomposition of this matrix,
ATA = WD̃W t. Since ATA = V D2V T from the definition of the SVD, we have
that D2 = D̃ and V = W . U can then be obtained by matrix multiplications.
Alternatively, we could compute the eigendecomposition of AAT = UD2UT , which
will be faster when d2 > d1.

The eigendecomposition is very closely related to the SVD. The real eigendecom-
position exists if and only if A is symmetric, and if A is PSD then the eigendecom-
position and the SVD are the same.
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