Numerical Linear Algebra Review

Stephen Bates

July 2, 2019

Runtimes cheat sheet

Let A be a $d_{1} \times d_{2}$ matrix, let B be a $d_{2} \times d_{3}$ matrix, and let v_{1} and v_{2} be vectors of dimension d_{1} and d_{2}, respectively.

- Computing $A B$ takes $O\left(d_{1} d_{2} d_{3}\right)$ operations.
- Computing the QR factorization of A takes $O\left(d_{1}^{2} d_{2}\right)$ operations. This is only defined for $d_{1}>d_{2}$.
- Computing the SVD of A takes $O\left(d_{1} d_{2} \min \left(d_{1}, d_{2}\right)\right)$ operations.
- For A symmetric, computing the eigendecomposition takes $O\left(d_{1}^{3}\right)$ operations.
- For A square, computing A^{-1} takes $O\left(d_{1}^{3}\right)$ operations.
- For A square, solving $A x=v_{1}$ for x takes $O\left(d_{1}^{3}\right)$ operations.

Matrix solves

A common task in numerical linear algebra is to find a solution x to the equation $A x=v_{1}$, for a square matrix A. For example, to compute a least-squares fit, we compute $\left(X^{T} X\right)^{-1} X^{T} y$, which requires one matrix solve. Since A^{-1} can be computed in $O\left(d_{1}^{3}\right)$ operations, we know that solve $A x=v_{1}$ can be down in $O\left(d_{1}^{3}\right)$ operations.

In practice, however, one does not solve $A x=v_{1}$ for x by computing the inverse matrix A^{-1}, because there are faster and more numerically stable alternatives. These alternatives still require $O\left(d_{1}^{3}\right)$ operations, but the constants are more favorable. Two techniques are commonly used. The general-purpose solution is to first compute the QR factorization, and then with $A=Q R$, solving $R x=Q^{T} v_{1}$ can be done quickly, since solving upper triangular systems only takes $O\left(d_{1}^{2}\right)$ time. As an alternative, if A is PSD, such as in the linear regression case, we use the Cholesky factorization $A=L L^{T}$ where L is an lower triangular matrix. To solve $A x=v_{1}$, we then solve two triangular systems $L z=v_{1}$ for z and then $L^{T} x=z$ for x. The Cholesky decomposition is faster than the QR method, but only applies when A is PSD.

QR decomposition

The QR decomposition takes the following form:

$$
A=Q R
$$

where Q is $d_{1} \times d_{2}$ with orthogonal columns, and R is upper triangular.

Cholesky decomposition

For a PSD matrix A, the Cholesky decomposition takes the following form:

$$
A=L L^{T}
$$

where L is a $d_{1} \times d_{1}$ lower triangular matrix.

SVD and eigendecomposition

The SVD is the most important factorization for statistics, and it takes the following form:

$$
A=U D V^{T}
$$

where U is $d_{1} \times r$ with orthogonal columns, D is $r \times r$ diagonal with positive entries decreasing along the diagonal, V is $d_{2} \times r$ with orthogonal columns, and r is the rank of A. The SVD exists for any matrix A. Computing the SVD is done by first computing the $A^{T} A$ and then taking the eigendecomposition of this matrix, $A^{T} A=W \tilde{D} W^{t}$. Since $A^{T} A=V D^{2} V^{T}$ from the definition of the SVD, we have that $D^{2}=\tilde{D}$ and $V=W . U$ can then be obtained by matrix multiplications. Alternatively, we could compute the eigendecomposition of $A A^{T}=U D^{2} U^{T}$, which will be faster when $d_{2}>d_{1}$.

The eigendecomposition is very closely related to the SVD. The real eigendecomposition exists if and only if A is symmetric, and if A is PSD then the eigendecomposition and the SVD are the same.

