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1 What is a principal component?

Let X ∈ Rn×p be our data matrix, and assume that the columns of X have been cen-
tered. The sample covariance matrix is S = XTX/n, and since it is a real symmetric
matrix, it admits an eigendecomposition:

XTX = V ΛV T ,

where V and Λ are p×p matrices, with V being orthogonal and Λ being diagonal. The
eigenvectors vj ∈ Rp (i.e. the columns of V ) are called the principal component
directions of X, while the derived variables zj = Xvj ∈ Rn are called the principal
components of X. The zj are also sometimes called principal component scores.

1.1 Connection to singular value decomposition (SVD)

Any matrix X admits a singular value decomposition X = UDV T , where U ∈ Rn×n

and V ∈ Rp×p are orthogonal, and D ∈ Rn×p is diagonal, in the sense that non-zero
entries only occur on the diagonal. The columns of U span the column space of X,
while the columns of V span the row space of X.

It turns out that this V is the same as the V obtained from the eigendecomposition
of XTX, and D2 = Λ from before. Thus, we can use a matrix’s SVD to obtain the
PC directions V , as well as the PCs themselves XV = UD.

∗Minor additions by Stephen Bates, 2019
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2 Interpretations of PCA

2.1 PC directions as variance maximizers

The first principal component direction v1 has the property that z1 = Xv1 has the
largest sample variance of all normalized linear combinations of the Xj. The proof is
fairly straightforward: if X is centered, then maximizing the variance of normalized
linear combinations of the Xj is given by

maximizev1 vT1X
TXv1 subject to ‖v1‖22 = 1,

which has solution equal to the first eigenvector of XTX.

Subsequent principal components zj have maximum variance subject to being orthog-
onal to the earlier ones.

It is this property that makes principal components a popular dimension reduction
technique. When we collect data X, we hope that there is variation in X. (Imagine
if the value for a feature Xj is always 1: that is not very informative for either
supervised or unsupervised learning!) Principal components allows us to summarize
the p features into k � p derived variables in a way that preserve variance in the
data optimally.

2.2 PC directions as best approximating linear manifold

Let’s think of our n observations x1, . . . , xn as living in Rp. (Assume still that the
features have been centered.) We want to find the rank-q linear manifold that “best”
approximates them. One measure of “best” is the linear manifold which minimizes
the sum of squared distances from the points to the manifold. If we parametrize the
manifold by f(λ) = µ + Vqλ, where µ ∈ Rp and Vq ∈ Rp×q and Vq orthogonal, then
we have to solve

minimizeµ,λi,Vq

N∑
i=1

‖xi − µ− Vqλi‖2.

We can partially optimize to obtain µ̂ = x̄ = 0, λ̂i = V T
q (xi − x̄) = V T

q xi, and so to
find Vq it remains to solve

argminVq

N∑
i=1

‖xi − VqV T
q xi‖2 = argminVq

N∑
i=1

C − 2xTi VqV
T
q xi + xTi VqV

T
q VqV

T
q xi

= argmaxVq

N∑
i=1

xTi VqV
T
q xi

= argmaxVqtr(V
T
q (XTX)Vq).
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The solution of this problem is the q largest eigenvectors of XTX, i.e. the PC direc-
tions for the top q principal components.

3 Connection to ridge regression

Recall that in ridge regression with regularization parameter λ, the coefficient esti-
mates are given by β̂λ = (XTX + λI)−1XTy. Plugging in the SVD of X into this
formula, we get

β̂λ = (V D2V T + λI)−1V DUTy

= [V (D2 + λI)V T ]−1V DUTy

= V diag

(
1

d2j + λ

)
DUTy

= V diag

(
dj

d2j + λ

)
UTy,

so the fitted values from ridge regression are

Xβ̂λ =

p∑
j=1

uj
d2j

d2j + λ
uTj y.

When there is no regularization (i.e. OLS), we have Xβ̂ = UUTy. Note that we can
interpret UTy as the coordinate of y w.r.t. the orthonormal basis U . Thus, what ridge
regression is doing is shrinking the coordinates of y w.r.t. U , and it is shrinking less
when

dj
d2j+λ

is large, i.e. dj is large, which corresponds to the top principal component

directions.

4 Generalizations of PCA

4.1 Kernel PCA

The principal components can also be computed from the inner-product (gram) ma-
trix K = XXT . If we look at the doubly-centered version of the gram matrix
K̃ = (I − 11T/N)K(I − 11T/N), this is equal to K̃ = UD2UT , and we can com-
pute our PCs Z = UD.

In regular PCA, Kij = 〈xi, xj〉 is the Euclidean inner product of features related to
the ith and jth observation. In kernel PCA, we transform the features to some other
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space (typically of much higher dimension), xi 7→ h(xi), and take Kij = 〈h(xi), h(xj)〉
as the Euclidean inner product in that new space. The neat thing is that while h is
of much higher dimension, we choose “kernels” so that we never have to deal with
h explicitly. For example, with the Gaussian kernel, we compute Kij = K(xi, xj) =
exp(−λ‖xi − xj‖2).

4.2 Sparse versions of PCA

Note that the first PC z1 = Xv1 is a linear combination of the Xj’s. In general v1
is not sparse, meaning that we need all p features in order to compute the first PC.
Sometimes, it is desirable for v1 to be sparse so that our principal components depend
on only a handful of features.

There have been a few attempts to define sparse principal components in different
ways. The first attempt was due to Jolliffe et al. 2003, which uses the “maximal
variance” property of the first PC but penalizes the vector v1:

maximizev1 vT1X
TXv1 subject to ‖v1‖22 = 1, ‖v1‖1 ≤ c.

This optimization problem is difficult to solve. The most popular definition for sparse
PCA is probably due to Zou et al. 2006, where v1 is the solution to

minimizev1,α
∥∥X −Xv1αT∥∥2F + λ‖v1‖22 + µ‖v1‖1 subject to ‖α‖22 = 1.

This can be solved via an iterative method (fix v1 and minimize w.r.t. α, fix α and
minimize w.r.t. v1).
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