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1 Outline

Agenda: Bootstrap

1. Empirical Distribution, Plug-in idea

2. Bootstrap variance estimation

3. Bootstrap “pivot” CIs

Last time:

1. Inference for means (CLT, Hoeffding)

2. Inference (confidence bands) for CDFs (DKW, simulation)

2 Empirical Distributions

The core idea here is that given samples/observations Xi ∈ X iid∼ P, i = 1, ..., n, one can view
X⃗ = (X1, ..., Xn) as a (empirical) distribution.

Definition 1 (Empirical Distribution). The empirical distribution is P̂ = 1
n

∑n
i=1 δxi where δxi is

a point mass at xi.

Note that if X = R the empirical CDF F̂ corresponds to P̂ .

Through the definition of observed samples as a distribution, we can then approximate the true
distribution P with P̂ while P ̸= P̂ . The perspective lend itself naturally to asymptotics for which
we can denote a n-dependent P̂n.

Moving on, let us define statistics for functions

Definition 2 (Statistical Functional). A statistical functional is a mapping

T : {distribution on X} → Rd. (1)

The point here is this mapping also applies to infinite data points as a distribution
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Example 2.1.

Mean : T (P ) =

∫
xdPx

Sample mean : T (P̂ ) = X

Example 2.2.

Variance : T (P ) =

∫
x2dPx −

(∫
xdPx

)2

Empirical variance : T (P̂ ) = X2 − (X)2

Example 2.3.

Least-squares : T (P ) = argmin
θ

EP (Y − θ⊤X)2

Least-squares estimator : T (P̂ ) = argmin
θ

1

n

n∑
i=1

(Yi − θ⊤Xi)
2

In general, T (P̂ ) is a reasonable approximate to T (P ) since P̂ ≈ P . This is known as the “Plug-in”
principle, which will lead to Bootstrap.

3 Bootstrap Variance Estimation

Given observation: X⃗ = (X1, ..., Xn), we want to estimate T (P ) ∈ Rd.

Moreover, suppose that T ′ : X n → Rd is an estimation, we wish to understand the variance
VarP (T

′(X⃗)). One can think of such T ′ as T (P̂ ) but the idea generalizes.

For intuition, the observations are randomly given by underlying universe using a random seed,
want to understand how much do these sample vary under varying seeds.

The Bootstrap idea: Given the empirical distribution as samples, we posit that

VarP (T
′(X⃗)) ≈ VarP̂ (T

′(X⃗)) (2)

where VarP̂ (T
′(X)) can be computed via simulations like Monte Carlo. Useful when the analytical

computation of the RHS is difficult.

A quick notation change: V̂ar(T ′) : X n → Rd×d := VarP̂ (T
′(X⃗)).

Now, we define a algorithm for computing V̂ar:

Algorithm 1 Bootstrap for variance estimation

for b = 1, ..., B do

draw X∗
i

iid∼ P̂ , i=1,...,n
compute T ∗

b = T ′(X∗
1 , ..., X

∗
n)

end for
return V̂ar = Var(T ∗

1 , ..., T
∗
B) =

1
B

∑
b(T

∗
b − T ∗)
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The extra randomness for variance estimation here is really from the Monte Carlo simulation. To
aid understanding, here is illustration for the algorithm

We can also construct CIs for V̂ar:

C(X⃗) = T ′(X⃗)± Φ−1
(
1− α

2

)
V̂ar(T ′)

assuming that T ′ is centered correctly and the variance estimation is reasonably well. An associated

fact: P (T (P ) ∈ C(X⃗))
P−→ 1− α as n → ∞ under general conditions.

Note that Bootstrapping works even for misspecified models since the workflow does not require
model correctness. One can also perform Sub-sampling when the target variance estimation is not
the infinite dimensional truth but a finite sample empirical.

4 Pivotal Bootstrap

From the slides, when the sampling distribution is biased or skewed or both, we hope to adjust the
CIs to account for these discrepancies. The idea for this is we will use Bootstrap to approximate
the distribution of T ′(X⃗)− T (P ) ∼ Q. We provide an algorithm for this:

Algorithm 2 Bootstrap approximation to Q

for b = 1, ..., B do

draw X∗
i

iid∼ P̂
compute R∗

b = T (X∗
1 , ..., X

∗
n)− T (P̂ )

end for
return Q̂ = 1

B

∑
b δR∗

b

We can then construct CI using the quantile of Q̂.

Pivotal CIs : If T ′(X)− T (P )
·∼ Q, then

P
(
qα

2
≤ T ′(X⃗)− T (P ) ≤ q1−α

2

)
≈ 1− α. (3)
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where q denote the quantile for the empirical distribution Q̂. We can then obtain the pivotal CI

T ′(X⃗)− q1−α
2
≤ T (P ) ≤ T ′(X⃗)− qα

2

which is adjusted for bias and skew. The idea is that we want to construct CIs using distributions
of some already-stable statistics.
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