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1 Outline

Agenda:

1. ”Duality”: Hypothesis testing ↔ CIs. Paving the way towards conformal prediction.

2. Example: Binomial CIs with improvements over CLT-CIs.

3. Introduction to p-values.

Recap – Statistical Inference:

1. CIs from CLT or Hoeffding’s inequality.

2. Confidence bands for CDFs, DKW Inequality.

3. Bootstrap

2 Confidence Interval and Hypothesis Testing duality

We will connect hypothesis tests & CIs and get more clarity about CIs. As a byproduct, we will get
a recipe for generating confidence intervals from a given collection of tests, which will turn out to be
useful in our treatment of conformal prediction. The setting is as usual: Θ is our parameter space,
and X is the sample space. We observe data X ∈ X for Pθ for some true parameter θ ∈ Θ. Recall
that a confidence interval is mapping data to a subset of the parameter space, i.e. C : X → 2Θ.

Idea In a specific sense that we make clear below, a confidence interval is equivalent to a collection
of tests {ϕθ̃ : X → {0, 1} | θ̃ ∈ Θ}. Such a collection of tests gives rise to a confidence interval, and
reversely, any confidence interval gives us a collection of tests.

Recall our definitions of confidence intervals:

Definition 1. A confidence interval C : X → 2Θ is level α if

Pθ(θ ∈ C(X)) ≥ 1− α for all θ ∈ Θ. (1)

That is, the confidence interval includes (”covers”) the true parameter with high probability. Next,
recall our definition of type-I error in a hypothesis test.
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Definition 2. We call a test ϕθ̃ : X → {0, 1} level-α whenever

Pθ̃(ϕθ̃(X) = 1) ≤ α. (2)

This corresponds to α-bounded Type-I error when testing the point null Θ0 = {θ̃}.

We can now prove both directions of the equivalence.

Lemma 3. Suppose C is a CI that satisfies (1). Fix θ̃ ∈ Θ and define the test

ϕθ̃(X) =

{
1 θ̃ ̸∈ C(X)

0 θ̃ ∈ C(X).

Then ϕθ̃ is level-α.

Proof.

Pθ̃(ϕθ̃(X) = 1) = Pθ̃(θ̃ ̸∈ C(X))
(1)

≤ α.

Hence, a CI gives rise to a collection of tests, as claimed. For the other side, we formalize as follows:

Lemma 4. Take a collection of tests {ϕθ̃ : X → {0, 1} | θ̃ ∈ Θ} that each satisfy (2). Construct

C(X) = {θ̃ ∈ Θ | ϕθ̃(X) = 0}.

Then, C is a level-α CI.

Proof. For any fixed θ ∈ Θ

Pθ(θ ∈ C(X)) = Pθ(ϕθ(X) = 0)
(2)

≥ 1− α.

Intuition To build a CI based on a collection of tests, we collect all the parameters that are
consistent enough with the data, or more precisely, consistent enough with the data such that the
corresponding test does not reject the point null.

3 Binomial CIs

We investigate the specific class of models X ∼ Binom(n, θ), where θ ∈ [0, 1] = Θ. We also define
the sample average as X̄ = X/n.
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Coverage of Wald Confidence Interval (90%)

(a) Observe that for small θ we
need more samples to converge to
the desired coverage. Also note
that the sawtooth pattern is not
due to simulation error, but due to
the discrete nature of the Binomial
Distribution.
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(b) Miscoverage below happens
comparatively rarely especially
when n is small. Only asymptoti-
cally do we incur an α/2 = 0.05
portion of miscoverage from cases
where the true θ is below the CI.
For very small θ = 0.001 we see
that it takes a lot of samples until
we start making any errors.
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(c) On the other hand, if we plot
the miscoverage above, we see that
especially in small sample regimes,
we incur a lot of error (this makes
sense, since the coverage in (a) is
poor, which is almost entirely due
to cases where the CI is too low.)

Figure 1: Coverage of CLT Intervals with θ = p.

3.1 Asymptotic CIs

We know how to build asymptotically valid CIs by way of the CLT. The CI

CWald(X) =

{
θ ∈ [0, 1] | X̄ − 1.64

√
X̄(1− X̄)

n
≤ θ ≤ X̄ + 1.64

√
X̄(1− X̄)

n

}

is asympotically of level-α for α = 0.1. Such intervals are called Wald intervals. These intervals
can be poor for some choices of n and θ, as we observe in the miscoverage plots in Figure 1.

Since the plotted values of θ are small, most of the miscoverage happens above, i.e. the true θ lies
to the right of our confidence interval. This is exacerbated when n isn’t too large, and when θ is
small, because then the sample mean can be zero, and then CWald(X) = {0}.

Remark 5. The contrast between Figure 1 (b) and (c) suggests that most miscoverage is incurred
because the CIs are too low. Only asymptotically, the errors are balanced out between miscoverage
below and above. The reason for this is that CWald(X) gets narrower when X̄ is smaller. In
particular when X̄ is smaller than E[X̄] = θ, in which case the CI is centered below θ. This is
something that is likely to happen when θ is small, and even more likely when additionally n is
small too. In such cases, θ ̸∈ CWald(X) lies to the right of the CI. Note that this is not specific to
small values of θ. What really matters is whether X̄ is close to zero or with similar effects, whether
1− X̄ is close to 1. In other words, θ and 1− θ are symmetric problems.

3.2 Exact Confidence Intervals

In contrast, the exact confidence intervals Cexact we build from (one-sided) hypothesis tests will
have exact coverage (up to discretization errors), along with balanced coverage (by design). Recall
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that we wish to include all the θ̃ ∈ Θ that can plausibly generate the data. For any value θ̃ ∈ [0, 1],
We will test the null hypothesis Θ0 = {θ̃} against Θ1 = [0, 1] \ Θ0. We want balanced coverage,
so we will conduct two one-sided tests and allocate the level-α Type-I error budget between them
evenly. For any θ̃ ∈ Θ

1. We are going to test Θ0 = {θ̃} against Θ1 = {θ > θ̃} with the test ϕ↑
θ̃

2. We are going to test Θ0 = {θ̃} against Θ1 = {θ < θ̃} with the test ϕ↓
θ̃

Our CI will include all parameters that neither test rejects:

Cexact(X) = {θ̃ ∈ Θ | ϕ↑
θ̃
(X) = ϕ↓

θ̃
(X) = 0}.

For a binomial, we have the monotone likelihood ratio property, so a Neyman-Pearson test reduces
to a thresholding rule on X̄:

ϕ↑
θ̃
(X) =

{
1 X̄ > τ↑

0 otherwise

where τ↑ is the
(
1− α

2

)
-quantile of Binom(n,θ̃)

n . Similarly,

ϕ↓
θ̃
(X) =

{
1 X̄ < τ

0 otherwise

where τ↓ is the α
2 -quantile of Binom(n,θ̃)

n .

Example 6. We can illustrate the difference with the example n = 100, X̄ = 0. We will have
Cexact(X) = [0, 0.03], but CWald(X) = {0}. Similarly, if n = 1000 and X̄ = 0, we will have
Cexact(X) = [0, 0.003], but again CWald(X) = {0}. We can see that Cexact scales appropriately with
n, while CWald(X) is very dependent on the realization of X̄.

We conclude with a series of remarks

Remark 7. In finite samples
Pθ(θ ∈ Cexact(X)) ≥ 1− α,

while in contrast, the Wald intervals only give asymptotic coverage

Pθ(θ ∈ CWald(X)) → 1− α as n → ∞.

Remark 8. Instead of splitting the test into two parts, we can also formulate our procedure using
the two-sided tests

ϕcombined
θ̃

(X) =

{
1 ϕ↑

θ̃
(X) = 1 or ϕ↓

θ̃
(X) = 1

0.

This even more clearly illustrates that this construction was following the general ”duality” recipe.

4



4 Introduction to p-values

In a nutshell, a p-value is a measurement of disagreement of X with X ∼ Pθ̃.

Definition 9. Let f : X → [0, 1]. Then f(X) is a p-value for Θ0 ⊂ Θ if

Pθ̃(f(X) ≤ t) ≤ t for all t ∈ [0, 1] and θ̃ ∈ Θ0.

We also call such a random variable f(X) a super-uniform random variable

Note that when the inequality is exact, f(X) is just a uniform random variable when i.e. Pθ̃(f(X) ≤
t) = t or in other words f(X) ∼ Unif(0, 1) under θ̃ ∈ Θ0.

Example 10. Let X ∼ N(θ, 1) and Θ0 = {0}. Then f(X) = 1−Φ(X) is a p-value. It’s uniformly
distributed under the null because

P0(f(X) ≤ t) = P(1− Φ(X) ≤ t) = P(Φ(X) ≥ 1− t) = t.

Remark 11. Here, the p-value corresponds to the amount of mass that N(θ0, 1) assigns to ob-
servations that are more extreme than what we have observed. Indeed, generally, p-values are tail
probabilities. Assume now that we observe n = 10000 i.i.d. Normal random variables Xi ∼ N(θ, 1).
Suppose X̄ = 0.1 is observed. A corresponding p− value for the null hypothesis Θ0 = {0} would be
0.0008, suggesting that this event is very unlikely to happen under the null Θ0. Finally note that
in this case, a valid CI could include values between 1− 0.05, and 1 + 0.05, yielding different types
of information.
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