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1 Outline

Agenda:

1. Predictive inference overview

Key challenge: training residuals too small

2. Linear model calculation

3. Start conformal prediction

Recap:

1. CIs from CLT, Hoeffding

2. empirical CDFs, bands for DKW

3. bootstrap CIs

4. testing ↔ CI Duality

5. Permutation tests

2 Prediction Inference

(Can think of it as confidence intervals in a supervised learning setting)

The setting. Let X be a space of covariates, and Y be the space of labels. For this lecture, we
simply assume X = Rd and Y = R. We assume pairs (Xi, Yi) are generated in i.i.d. manner from
some distribution P , i.e.,

(Xi, Yi)
iid∼ P, for i = 1, . . . , n.

Let D denote the training data, i.e.,

D = {(Xi, Yi), i = 1, . . . , n} .

Our high level goal is to be able to predict Y ’s from X’s. Specifically, we will assume there is a test
point Xtest, Ytest ∼ P generated from the same distribution independently of D; we observe Xtest

and want to predict Ytest. More formally, we have the following structure.
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Structure:

(i) Observe D

(ii) Fit some model f̂ : X → Y

(iii) Observe Xtest and predict Ytest. Also, along with a prediction, we often aim to output a
confidence interval for Ytest.

By producing a confidence interval (CI) in this setting we formally mean the following

C : Rd × Rn×(d+1) → 2R.

In the above, 2R is a collection of all subsets of R. I.e., C takesXtest ∈ Rd and D ∈ Rn×(d+1) as
inputs, and produces a subset of R. The coverage guarantee we are aiming for can be written as
follows

P (Ytest ∈ C(Xtest;D)) ≥ 1− α, for some α ∈ (0, 1) fixed. (1)

We want this to hold as generally as possible i.e. for many distributions and many algorithms that
produce f̂ . First, we consider a naive approach of achieving the above.

2.1 First attempt (wrong)

We can try to use residuals, defined as

ri = Yi − f̂(Xi), for i = 1, . . . , n

to produce a confidence interval satisfying (1). In particular, let qα/2 and q1−α/2 denote the (α/2)
th

and (1 − α/2)th quantiles respectively of the collection {ri}ni=1. Then, we can define a “naive” CI
as

Cnaive(Xtest;D) = (f̂(Xtest) + qα
2
, f̂(Xtest) + q1−α

2
))

The problem with the above is that ri will often be too small, due to the phenomenon of overfit-
ting. The model f̂ will often “fit” the training dataset D too well, and, as a result, the residuals
on D will be too “optimistic.” For example, some modern machine learning algorithms produce
overparameterized models for which ri = 0 for all i, but we cannot expect such a model to fit the
test set perfectly.

We will fix this problem using data splitting.

2.2 Second attempt (works)

We will split the dataset D in two parts and use first half to train f̂ and the second to construct a
CI. More, formally, we use (Xi, Yi) i = 1, . . . , n/2 to produce f̂ , and calculate the quantiles of the
residuals of f̂ only on the remaining points (Xi, Yi) i = n/2 + 1, . . . , n. This leads to a confidence
interval of the form

Csplit(Xtest;D) = (f̂(Xtest) + qα
2
, f̂(Xtest) + q1−α

2
)),

where qα/2, q1−α/2 are quantiles of the collection {Yi − f̂(X̂i)} for i = n/2, . . . , n. Observe that f̂
has not “seen” these datapoints. The following proposition will be proven in subsequent lectures
as a corollary of a more general statement.
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Proposition 1. For the Csplit defined above, we have

P (Ytest ∈ Csplit) ≥ 1− α− 1
n
2 + 1

Note that the above works for any distribution and any model f̂ . Moreover, one can show an upper
bound on the coverage as well, i.e., the coverage is in fact close to 1− α.

3 Linear Model Calculation

To formally argue that the approach in Section 2.1 does not work, we consider an example of a
Gaussian linear model. Specifially, we will show that ordinary least squares estimator in this setting
has smaller residuals on training data as opposed to test data.

The setting. Let X ∈ Rn×d be a fixed design matrix1, which will be shared by both training
and test data. Let the responses for the training data Y ∈ Rn be generated by a Gaussian linear
model Y = Xθ + ϵ where we assume ϵ ∼ N (0, σ2I).

Similarly, we assume that the test data is generated Ỹ = Xθ + ϵ̃ ∈ Rn with ϵ̃ ∼ N (0, σ2I). Here,
ϵ, ϵ̃ are independent. Thus we study the train and test data using the same X, but with “fresh”
noise terms ϵ.

Recall that the we have a closed form solution of the least squares estimator of the parameter
θ ∈ Rd

θ̂ = argmin
θ∈Rd

||Y −Xθ||2 = (XTX)−1XTY,

and let
Ŷ = X̂θ = X(XTX)−1XTY = HY,

where the projection H := X(XTX)−1XT is the so-called “hat matrix”2 of the linear regression
problem, mapping the training data onto the space of predictions. Furthermore, we introduce the
training residuals as follows

r = Y − Ŷ ∈ Rn.

Similarly, test residuals are given by

r̃ = Ỹ − Ŷ ∈ Rn.

We will show that the magnitude of the test residuals ||r̃|| is in general larger than the residuals of
the training data ||r||. We establish bounds in the following proposition:

Proposition 2. We have

(i)

E
||r||2

n
=

n− d

n
σ2

1Note that this does not exactly match the setting in Section 2.1 as X is non-random here and is shared between
training and test data. This is done only for convenience, and this detail is in fact immaterial.

2The name comes from the fact that it maps Y to the “hat version” Ŷ .
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(ii)

E
||r̃||2

n
=

n+ d

n
σ2

(iii)

E
||Y −Xθ||2

n
= σ2

Observe that, as promised, the quantity in (ii) is larger than quantity in (i), thus, residuals on the
training data are optimistic and differ from the residuals on test data. Moreover, note that the θ
is the right model for predicting Y and it corresponds to MSE of σ2 (see (iii)). The quantity in (i)
is smaller, which further shows that least squares overfit the training data.

Proof of Proposition 2. We prove each assertion separately.

Proof of (i). By definition of training residuals r, we have

E ||r||2 = E
∣∣∣∣∣∣Y − Ŷ

∣∣∣∣∣∣2 = E ||Y −HY ||2 = E ||(I −H)Y ||2

Note that in the above, Y is random Gaussian vector, and (I−H) is a fixed matrix. Then, (I−H)Y
is distributed as follows

(I −H)Y ∼ N
(
(I −H)Xθ, (I −H)(I −H)Tσ2

)
.

From HW2, we know that H is a projection matrix onto the columb space of X. Thus, HX = X
and (I−H)X = 0, i.e., (I−H)Y is zero-mean. Moreover, (I−H) is thus an orthogonal projection
onto the orthocomplement of the column space of X. Thus, (I − H)(I − H)⊤ = (I − H) (as
projection matrices are idempotent). Thus,

(I −H)Y ∼ N
(
0, σ2(I −H)

)
.

Recall that we are only interested in the expected squared norm (I − H)Y . By the rotation
invariance of Gaussian vectors, the expected squared norm of (I −H)Y is the same as of a vector
sampled from a zero-mean Gaussian with a diagonal covariance that has same eigenvalues as σ2(I−
H). As (I −H) is an orthogonal projection onto the orthocomplement of the column space of X,
which has dimension n − d, it has eigenvalue 1 with multiplicity n − d and eigenvalue 0 with
multiplicity d. This implies

E ||r||2 = (n− d)σ2.

Proof of (ii). By definintion of training residuals r̃, we have

E ||r̃||2 = E ||Xθ + ϵ̃−H(Xθ + ϵ)||2

=(a) E ||ϵ̃−Hϵ||2

=(b) E ||ϵ̃||2 + E ||Hϵ||2 ,

where in (a) we used the fact that HXθ = Xθ, since H projects X onto itself, and in (b) we used
the fact that ϵ̃ and ϵ are independent. Note that, in the above

ϵ̃ ∼ N (0, σ2I), ϵ̃ ∼ N (0, σ2HHT ).
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Similarly to the reasoning for part (i), we note that HHT has eigenvalue 1 with multiplicity d, and
eigenvalue 0 with multiplicity n− d. Thus,

E ||Hϵ||2 = dσ2,

and hence
E ||r̃||2 = nσ2 + dσ2,

as desired.

Proof of (iii). By definintion of Guassian linear model, we have

E ||Y −Xθ||2 = E ||ϵ||2 = nσ2.

An immediate corollary of the proposition above is

Corollary 3 (AIC). Take

M̂SE =
∣∣∣∣∣∣Ŷ − Y

∣∣∣∣∣∣2 + 2dσ̂2,

where σ̂2 = 1
n−d

∣∣∣∣∣∣Ŷ − Y
∣∣∣∣∣∣2 (unbiased estimate for σ2). Then, M̂SE is an unbiased estimator for

E
∣∣∣∣∣∣Ỹ − Ŷ

∣∣∣∣∣∣2.
4 Conformal Prediction

[Only covered high-level introduction in this lecture.] Conformal prediction is a general framework
for confidence intervals in prediction problems. In this class, we will primarily focus on the core
statistical idea behind the method.

Idea. Consider y ∈ Y, where Y is the space of all possible values of y. Intuitively, we want to
check if, by setting Ytest = y, the datapoint (Xtest, Ytest) looks “consistent” with the training data.
If it does, then we include y in the CI we are constructing; otherwise, y ̸∈ CI.

More formally, we define the family of tests ϕy for every y ∈ Y of the null hypothesis that Ytest = y,
and construct the CI-test duality.

CI = {y : ϕy(Xtest,D) = 0.}
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