6.S951 Modern Mathematical Statistics Fall 2024

Lecture 15 — November 7, 2024

Prof. Stephen Bates

Scribe: Ashutosh Tripathi

1 Outline

Recap: Last time: Predictive Inference

- 1. Goals: CIs for test point
- 2. Challenge: training residuals too small
- 3. Linear model calculation
- 4. Started discussing Conformal Prediction

Agenda: Conformal Prediction

- 1. Residual Case
- 2. General case, conditional coverage

2 Conformal Prediction: Residual Case

Setting: Consider $(X_1, Y_1), \cdots (X_n, Y_n) \stackrel{\text{i.i.d.}}{\sim} P$, where $X_i \in \mathcal{X} = \mathbb{R}^n$ and $Y_i \in \mathcal{Y} = \mathbb{R}$. Define the training data set $\mathcal{D} = \{(X_1, Y_1), \cdots, (X_n, Y_n)\}.$

We also have a test data point $(X_{\text{test}}, Y_{\text{test}}) \sim P$, where Y_{test} is not observed.

High-Level Idea of Conformal Prediction: Consider $y \in \mathbb{R}$. We then test if

$$
(X_{\text{test}}, y) \stackrel{d}{=} (X_i, Y_i)
$$

by forming a test $\phi_y(X_{\text{test}}; \mathcal{D}).$

Then the confidence interval for Y_{test} is

$$
CI(X_{\text{test}}) = \{ y \mid \phi_y(X_{\text{test}}, \mathcal{D}) = 0 \}.
$$

Let $\hat{f}(x; \mathcal{D} \cup (X_{\text{test}}, y))$ be a prediction of Y given $X = x$ based on training data $\mathcal{D} \cup (X_{\text{test}}, y)$.

Here, \hat{f} can be anything, but must be symmetric in $\mathcal{D} \cup (X_{\text{test}}, y)$ (i.e. invariant to ordering) (†). Given this, the algorithm for full conformal prediction is:

Theorem 1. Consider \hat{f} , as defined earlier, which is symmetric (as in (†)). Also assume

$$
(X_1, Y_1), \cdots, (X_n, Y_n), (X_{test}, Y_{test}) \stackrel{i.i.d.}{\sim} P.
$$

Then Algorithm 1 works as intended, i.e.

$$
P(Y_{test} \in CI(X_{test})) \ge 1 - \alpha.
$$

Proof. By duality of CI and hypothesis tests, we note that $Y_{\text{test}} \in \text{CI}(X_{\text{test}}) \iff p^{Y_{\text{test}}} > \alpha$.

Since we are interested only in checking coverage guaranteed, it suffices to only check for Y_{test} , even though running the full conformal prediction requires us to train the model using values $y \neq Y_{\text{test}}$ as well. As a result, it suffices to show that

$$
P(p^{Y_{\text{test}}} > \alpha) \ge 1 - \alpha,
$$

i.e. $p^{Y_{\text{test}}}$ is super-uniform.

Now, condition on the **unordered data** $\mathcal{D} \bigcup \{(X_{\text{test}}, Y_{\text{test}})\},$ i.e. we condition on knowing the $n+1$ data points, but we don't know the ordering.

Critical Step: Notice that $|r_{\text{test}}^{\text{test}}|$ is a random draw from

 $\{|r_1^{\rm test}|, \cdots, |r_n^{\rm test}|, |r_{\rm test}^{\rm test}|\},\$

by symmetry. This step is rather subtle, and works as we are assuming all our $n + 1$ points are i.i.d. As a result, the test residual can be thought of being randomly sampled from the set of all the residuals.

From definition, we note that

$$
p^{Y_{\text{test}}} = \frac{1 + \sum_{i=1}^{n} \mathbb{1}\{|r_{\text{test}}^{Y_{\text{test}}} | \leq |r_i^{Y_{\text{test}}}|\}}{n+1}
$$

We claim that this is super-uniform due to exchangeability. Indeed, this follows as, if we assume no ties, then $\sum_{i=1}^n \mathbb{1}\{|r_{\text{test}}^{Y_{\text{test}}}| \leq |r_i^{Y_{\text{test}}}| \} \sim \text{Unif}(\{0, \dots, n\})$, and the p-value follows a discrete uniform distribution,

$$
p^{Y_{\text{test}}} \sim \text{Unif}\left(\left\{\frac{1}{n+1}, \cdots, \frac{n}{n+1}, 1\right\}\right).
$$

The case with ties follows easily as well.

 \Box

Remarks

- We don't have $(n + 1)!$ due to the the inclusion of symmetry.
- We can simplify the algorithm by doing various forms of data-split
- The argument is rich: it can be extended beyond the i.i.d setup.
- This can be extened to online learning, outlier detection, image segmentation, etc.

3 Score Functions

We are going to replace the residual $|y - \hat{f}(X_{\text{test}}; \mathcal{D} \cup (X_{\text{test}}, y))|$ with a generic measurement of agreement.

Definition A symmetric score function $S((X_{\text{test}}, y); \mathcal{D})$: $(\mathcal{X} \times \mathcal{Y})^{n+1} \to \mathbb{R}$ is a function that is invariant to ordering of D , i.e.

$$
S((X_{\text{test}}, y); \mathcal{D}) = S((X_{\text{test}}, y); \mathcal{D}_{\sigma})
$$

Idea: Large value encodes worse agreement.

Example (Residual score) An example of residual score was something we just saw - the (training) residuals. In particular,

$$
S^{\text{resid}}((X_{\text{test}}, y); \mathcal{D}) = |y - \hat{f}(X_{\text{test}}; \mathcal{D} \cup (X_{\text{test}}, y))|,
$$

where \hat{f} is symmetric as earlier.

Example (Leave one out score) Another example of a symmetric score function is leave one out,

$$
S^{\rm loop}((X_{\rm test}, y); \mathcal{D}) = |y - \hat{f}(X_{\rm test}; \mathcal{D})|,
$$

which is a variation of residual score.

Example (Heteroskedastic score) Define the Heteroskedastic score function as

$$
S^{\text{het}}((X_{\text{test}}, y); \mathcal{D}) = \frac{S^{\text{resid}}((X_{\text{test}}, y); \mathcal{D})}{\hat{\sigma}(X_{\text{test}})}.
$$

Example (Quantile score) Say, $\hat{\tau}_{\alpha/2}(x;\mathcal{D}), \hat{\tau}_{1-\alpha/2}(x;\mathcal{D})$ are quantile estimates of $Y_{\text{test}} \mid X_{\text{test}} =$ x. Then, the quantile regression score function is defined as

$$
S^{\text{QR}}((X_{\text{test}}, y); \mathcal{D}) = \max(\hat{\tau}_{\alpha/2}(X_{\text{test}}; \mathcal{D}) - y, y - \hat{\tau}_{1-\alpha/2}(X_{\text{test}}; \mathcal{D})).
$$

Note that the algorithm for the full conformal prediction is similar to the one earlier.

Algorithm 2 Full Conformal Prediction: Generic case

for $y \in \mathbb{R}$ do Calculate $r_i^y = S(X_i; (\mathcal{D} \setminus (X_i, Y_i)) \cup (X_{\text{test}}, y))$ Calculate $r_{\text{test}}^y = S(X_{\text{test}}; \mathcal{D})$ Calculate $p^y = \frac{1 + \sum_{i=1}^n \mathbb{1}\{r_{\text{test}}^y \leq r_i^y\}}{1 - \sum_{i=1}^n r_i^y}$ $n + 1$

end for Return $CI(X_{test}) = \{y \mid p^y > \alpha\}$

Theorem 2. If S is a symmetric score function. Also assume

$$
(X_1, Y_1), \cdots, (X_n, Y_n), (X_{test}, Y_{test}) \stackrel{i.i.d.}{\sim} P.
$$

 $\binom{y}{i}$

Then Algorithm 2 works as intended, i.e.

$$
P(Y_{test} \in CI(X_{test})) \ge 1 - \alpha.
$$

Proof. The proof is analogous to that of Theorem 1.

Key Takeaway: In general, the score function changes the shape.

 \Box