
6.S951 Modern Mathematical Statistics Fall 2024

Lecture 15 — November 7, 2024

Prof. Stephen Bates

Scribe: Ashutosh Tripathi

1 Outline

Recap: Last time: Predictive Inference

1. Goals: CIs for test point

2. Challenge: training residuals too small

3. Linear model calculation

4. Started discussing Conformal Prediction

Agenda: Conformal Prediction

1. Residual Case

2. General case, conditional coverage

2 Conformal Prediction: Residual Case

Setting: Consider (X1, Y1), · · · (Xn, Yn)
i.i.d.∼ P , where Xi ∈ X = Rn and Yi ∈ Y = R.

Define the training data set D = {(X1, Y1), · · · , (Xn, Yn)}.

We also have a test data point (Xtest, Ytest) ∼ P , where Ytest is not observed.

High-Level Idea of Conformal Prediction: Consider y ∈ R. We then test if

(Xtest, y)
d
= (Xi, Yi)

by forming a test ϕy(Xtest;D).

Then the confidence interval for Ytest is

CI(Xtest) = {y | ϕy(Xtest,D) = 0}.

Let f̂ (x;D ∪ (Xtest, y)) be a prediction of Y given X = x based on training data D ∪ (Xtest, y).
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Here, f̂ can be anything, but must be symmetric in D ∪ (Xtest, y) (i.e. invariant to ordering) (†).

Given this, the algorithm for full conformal prediction is:

Algorithm 1 Full Conformal Prediction: Residual case

for y ∈ R do
Calculate ryi = Yi − f̂ (Xi;D ∪ (Xtest, y))

Calculate rytest = y − f̂ (Xtest;D ∪ (Xtest, y))
Calculate

py =
1 +

∑n
i=1 1{|r

y
test| ≤ |ryi |}

n+ 1

end for
Return CI(Xtest) = {y | py > α}

Theorem 1. Consider f̂ , as defined earlier, which is symmetric (as in (†)). Also assume

(X1, Y1), · · · , (Xn, Yn), (Xtest, Ytest)
i.i.d.∼ P.

Then Algorithm 1 works as intended, i.e.

P (Ytest ∈ CI(Xtest)) ≥ 1− α.

Proof. By duality of CI and hypothesis tests, we note that Ytest ∈ CI(Xtest) ⇐⇒ pYtest > α.

Since we are interested only in checking coverage guaranteed, it suffices to only check for Ytest, even
though running the full conformal prediction requires us to train the model using values y ̸= Ytest
as well. As a result, it suffices to show that

P (pYtest > α) ≥ 1− α,

i.e. pYtest is super-uniform.

Now, condition on the unordered data D
⋃
{(Xtest, Ytest)}, i.e. we condition on knowing the n+1

data points, but we don’t know the ordering.

Critical Step: Notice that |rtesttest| is a random draw from{
|rtest1 |, · · · , |rtestn |, |rtesttest|

}
,

by symmetry. This step is rather subtle, and works as we are assuming all our n + 1 points are
i.i.d. As a result, the test residual can be thought of being randomly sampled from the set of all
the residuals.

From definition, we note that

pYtest =
1 +

∑n
i=1 1{|r

Ytest
test | ≤ |rYtest

i |}
n+ 1

We claim that this is super-uniform due to exchangeability. Indeed, this follows as, if we assume no
ties, then

∑n
i=1 1{|r

Ytest
test | ≤ |rYtest

i |} ∼ Unif({0, · · · , n}), and the p-value follows a discrete uniform
distribution,

pYtest ∼ Unif

(
{ 1

n+ 1
, · · · , n

n+ 1
, 1}

)
.

The case with ties follows easily as well.
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Remarks

• We don’t have (n+ 1)! due to the the inclusion of symmetry.

• We can simplify the algorithm by doing various forms of data-split

• The argument is rich: it can be extended beyond the i.i.d setup.

• This can be extened to online learning, outlier detection, image segmentation, etc.

3 Score Functions

We are going to replace the residual |y − f̂(Xtest;D ∪ (Xtest, y))| with a generic measurement of
agreement.

Definition A symmetric score function S((Xtest, y);D) : (X × Y)n+1 → R is a function that
is invariant to ordering of D, i.e

S((Xtest, y);D) = S((Xtest, y);Dσ)

Idea: Large value encodes worse agreement.

Example (Residual score) An example of residual score was something we just saw - the
(training) residuals. In particular,

Sresid((Xtest, y);D) = |y − f̂(Xtest;D ∪ (Xtest, y))|,

where f̂ is symmetric as earlier.

Example (Leave one out score) Another example of a symmetric score function is leave one
out,

Sloo((Xtest, y);D) = |y − f̂(Xtest;D)|,

which is a variation of residual score.

Example (Heteroskedastic score) Define the Heteroskedastic score function as

Shet((Xtest, y);D) =
Sresid((Xtest, y);D)

σ̂(Xtest)
.
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Example (Quantile score) Say, τ̂α/2(x;D), τ̂1−α/2(x;D) are quantile estimates of Ytest | Xtest =
x. Then, the quantile regression score function is defined as

SQR((Xtest, y);D) = max
(
τ̂α/2(Xtest;D)− y, y − τ̂1−α/2(Xtest;D)

)
.

Note that the algorithm for the full conformal prediction is similar to the one earlier.

Algorithm 2 Full Conformal Prediction: Generic case

for y ∈ R do
Calculate ryi = S (Xi; (D \ (Xi, Yi)) ∪ (Xtest, y))
Calculate rytest = S (Xtest;D)
Calculate

py =
1 +

∑n
i=1 1{r

y
test ≤ ryi }

n+ 1

end for
Return CI(Xtest) = {y | py > α}

Theorem 2. If S is a symmetric score function. Also assume

(X1, Y1), · · · , (Xn, Yn), (Xtest, Ytest)
i.i.d.∼ P.

Then Algorithm 2 works as intended, i.e.

P (Ytest ∈ CI(Xtest)) ≥ 1− α.

Proof. The proof is analogous to that of Theorem 1.

Key Takeaway: In general, the score function changes the shape.

Figure 1: For the given dataset, we plot the CI bands for the different score functions
Sresid, Shet, SQR as labeled in the plot. We note that compared to the residual and heteroskedastic
score functions, the quantile score function seems to more closely fit the data, and thus give a more
reasonable confidence interval.
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