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2 Multiple Hypothesis Testing
Similar to the setup for single hypothesis testing, we consider data X ∼ Pθ, where θ ∈ Θ. However,
here we test multiple null hypotheses: H0,i : θ ∈ Θ0,i for i = 1, . . . , n. Here n is the number of
hypotheses, and Θ0,i are general subsets of Θ that may overlap. A straightforward example is that
H0,i is a null hypothesis about the i-th coordinate of X, and Θ0,i contains parameters with their
i-th coordinate satisfying the null condition. We ask the following questions.

Questions

1. (Global null testing). Is ∩iH0,i true? For example, when the null hypothesis is
H0,i : θi = 0, the global null testing asks whether θ = 0 holds.

2. Which H0,i are not true? We ask this because the effects of the alternative hypotheses
are often of greater interest. Let the output of a multiple hypothesis test be the rejection
set R ⊂ {1, . . . , n}. We assess the following two error metrics:

1. (Family-wise error rate; FWER). We want to return an R such that
P(R contains any null) ≤ α

2. (False discovery rate). We want to return an R such that at most an α-fraction
of the rejected hypotheses are null.

Example 1 (Gaussian). Consider Gaussian data X ∼ N (θ, I) with θ ∈ Rd. One example multiple
testing problem is to test against H0,i : θi = 0.

Example 2 (Genome-wide association studies). Given some disease status variable Y , we want to
study the association of each gene with the disease. Consider X ∈ Rn with n ≈ 20, 000, where Xi is
some gene. We test against H0,i : Xi is independent of Y .
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A key question in designing a multiple testing algorithm is how to combine the results of individual
hypothesis tests to produce a coherent output. p-values serve as a convenient object to work with
for this purpose. We denote pi as the p-value for H0,i, i.e., Pθ(pi ≤ t) ≤ t for all θ ∈ Θ0,i and
t ∈ [0, 1]. Note that we only need the p-value to be super uniform; but sometimes we assume they
are exactly uniform to obtain tight results. Figure 1 plots the sorted p-values for different signals.
Specifically, when the null hypothesis is true, the p-values are uniformly distributed (no interesting
signal); when the sorted p-values deviate significantly from the line y = x, it presents a clear signal.
However, this signal does not directly translate into that all p-values below a certain threshold are
significant. Because when there are many true nulls, some of their p-values will be small by chance.
Thus, the observed signal suggests only a systematic departure from the null hypothesis rather than
significance for each individual p-value.
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Figure 1: Sorted p-values

A multiple testing algorithm using p-values is of the form

A : [0, 1]n → 2{1,...,n} ∼= {0, 1}n, p⃗ 7→ R.

One simple algorithm of this kind is the Bonferroni algorithm.

Definition 3 (Bonferroni). Let α ∈ (0, 1) be the family-wise error rate (FWER). Let {pi}n
i=1 be the

p-values of individual tests. The Bonferroni algorithm returns

A(p⃗) = {i : pi ≤ α/n}.

Proposition 4 (FWER control for Bonferroni). The Bonferroni algorithm controls the FWER at
level α.

Proof. By definition, the FWER is

P(∃i : pi ≤ α/n) = P(∪i∈N {pi ≤ α/n}),

where N = {1 ≤ i ≤ n : H0,i is true}. Then, by the union bound,

P(∪i∈N {pi ≤ α/n}) ≤
∑
i∈N

P(pi ≤ α/n) ≤
∑
i∈N

α/n ≤ α.
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We remark that the Bonferroni algorithm works for dependent tests. Nonetheless, the following
example on independent Gaussian helps us understand the algorithm.

Example 5 (Gaussian). Consider data X ∼ N (θ, I), null hypotheses H0,i : θi = 0, and one-sided
p-values pi = 1−Φ(Xi). Then, the Bonferroni algorithm rejects H0,i if pi ≤ α/n, which is equivalent
to Xi ≥ −Φ−1(α/n). See Figure 2 for a visualization of how the Bonferroni algorithm controls the
cumulative tail probability.
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Figure 2: The Bonferroni algorithm on Gaussian data

The following proposition gives an approximation of Φ−1(−α/n) for any α ∈ (0, 1).

Proposition 6. Let Zi
iid∼ N (0, 1), i = 1, . . . , n. We have

maxi Zi√
2 log n

P→ 1, as n → ∞.

By the max-central limit theorem, we have

−Φ−1(α/n) =
√

2 log n(1 + o(1)),

where the asymptotic holds as n → ∞.

Figure 3 gives an illustration of how
√

2 log n approximates Φ−1(−α/n) when α = 0.05.

3 Sparsity Connection
The previous proposition already connects the threshold of the Bonferroni algorithm to the max
statistic, which is good for detecting sparse signals. The following propositions further formalize the
connection between the Bonferroni algorithm and sparsity, suggesting that the Bonferroni algorithm
is good at detecting sparse signals and dealing with sparse alternatives.

Proposition 7. If θ1 = (1 + ϵ)
√

2 log n with ϵ ∈ (0, 1) and θi = 0 for i ≥ 2, then the Bonferroni
algorithm has power

P(1 ∈ R = A(X)︸ ︷︷ ︸
reject H0,1

) → 1, as n → ∞.
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Figure 3: Approximation of Φ−1(−α/n).

Proof. First, by the definition of the Bonferroni algorithm, we have

P(1 ∈ R) = P(X1 ≥ −Φ−1(α/n)) = P(Z ≥ −Φ−1(α/n) − θ1),

where Z ∼ N (0, 1). Then, by Proposition 6, we get

P(Z ≥ −Φ−1(α/n) − θ1) = P(Z ≥ (1 + o(1) − 1 − ϵ)
√

2 log n).

Letting n → ∞ gives
P(1 ∈ R) → P(Z ≥ −∞) = 1.

The following proposition can be obtained by a similar argument.

Proposition 8. If θ1 = (1 − ϵ)
√

2 log n with ϵ ∈ (0, 1) and θi = 0 for i ≥ 2, then the Bonferroni
algorithm has power approaching 0 as n → ∞.
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