6.S951 Modern Mathematical Statistics

Fall 2024

Lecture 11 — November 21, 2024

Prof. Stephen Bates

Scribe: Kai Chang

1 Outline

Agenda:

- 1. Overview of asymptotic normality (optimality and confidence intervals)
- 2. Probability recap
- 3. Delta Method

Last time:

- 1. Prediction confidence intervals in linear model
- 2. Conformal prediction
- 3. Risk-controllability
- 4. Multiple testing
- 5. FWER (Bonferroni)
- 6. FDR (Benjamini-Hochberg)

2 Asymptotics

Problem Setting

Let $X_i \in \mathcal{X} \sim P$, i = 1, 2, ..., n be IID data points. We want to estimate $\theta \in \mathbb{R}^d$ ($\theta \mapsto P$) with an estimator: $\hat{\theta}_n : \mathcal{X}^n \to \mathbb{R}^d$ (the form of the estimator is predetermined, but data points are random).

Goal

Wish to understand the behavior of $\hat{\theta}_n$ (limiting behavior):

- A good estimator (theoretical).
- Confidence intervals (CIs) based on $\hat{\theta}_n$ (fixed on a prediction).

Convergence

It turns out for most $\hat{\theta}_n$,

$$\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\to} \mathcal{N}(0, \Sigma), \quad \hat{\theta}_n \sim \mathcal{N}(\theta, \Sigma_n).$$

Optimality

The smaller Σ is, the better the estimator (in the sense of SPD matrices).

Inference

Also want to characterize approximate confidence intervals:

$$\hat{\theta}_n^{(j)} \pm 1.96 \sqrt{\Sigma_{jj}/n}$$
.

3 Probability Reminder

Theorem 1 (CLT). Let $X_i \in \mathbb{R}^k$, $i = 1, 2, ..., be i.i.d. <math>\sim P$, with finite $\mu = \mathbb{E}[X_i]$ and $\Sigma = \mathbb{E}[(X_i - \mu)(X_i - \mu)^\top]$. Then:

$$\sqrt{n}(\bar{X} - \mu) \stackrel{d}{\to} \mathcal{N}(0, \Sigma).$$

Theorem 2 (Continuous Mapping). Let $Y_n \stackrel{d}{\to} Y^*$ and g be a continuous function. Then the followings hold.

- 1. $g(Y_n) \stackrel{d}{\to} g(Y^*)$, if g is continuous.
- 2. If $Y_n \stackrel{p}{\to} c$, g is continuous at c, then $g(Y_n) \stackrel{p}{\to} g(c)$.

Theorem 3 (Slutsky). Let $Y_n \stackrel{d}{\to} Y^*$ and $Z_n \stackrel{p}{\to} c$ (where c is a constant). Then the followings hold.

- 1. $Y_n + Z_n \stackrel{d}{\to} Y^* + c$.
- 2. $Y_n Z_n \stackrel{d}{\to} Y^* c$.
- 3. $Y_n/Z_n \xrightarrow{d} Y^*/c$, if $c \neq 0$.

Definition 4 (Uniform Tightness). Let Y_n be random vectors in \mathbb{R}^k . The sequence $\{Y_n\}$ is uniformly tight if $\forall \epsilon > 0$, $\exists M > 0$ such that:

$$\sup_{n} \mathbb{P}(\|Y_n\| > M) < \epsilon.$$

Uniform Tightness is an analogy of a bounded deterministic sequence (sequential compactness). With such a property, no probability mass is escaping to infinity.

Definition 5. Some other convenient definitions/notations are summarized here.

- 1. $o_p(1)$ is a sequence $Y_n \stackrel{p}{\to} 0$ (where Y_n is a random vector).
- 2. $O_p(1)$ is a sequence that is uniformly tight.
- 3. For random variables R_n , we have:
 - $X_n = o_p(R_n)$ if $X_n = Y_n R_n$, where $Y_n = o_p(1)$.
 - $X_n = O_p(R_n)$ if $X_n = Y_n R_n$, where $Y_n = O_p(1)$.
- 4. Analogy in scalar sequences:
 - o(1): Sequence converges to 0.
 - O(1): Bounded sequence.

Proposition 6. With the definitions above, the following statements hold:

- $o_p(1) + o_p(1) = o_p(1)$.
- $o_p(1) + O_p(1) = O_p(1)$.
- $o_p(R_n) = R_n o_p(1)$ by definition.
- $\bullet \ O_p(R_n) = R_n O_p(1).$

4 Delta Method (Taylor Theorem + Probability)

Delta method is a method to figure out the behavior of functions of sequences. Suppose

$$\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\to} \mathcal{N}(0, \Sigma),$$

and we want to know the behavior of $\phi(\hat{\theta}_n)$, where $\phi: \mathbb{R}^d \to \mathbb{R}^m$.

Idea: Taylor Expansion

Since $\hat{\theta}_n \stackrel{p}{\to} \theta$, $\hat{\theta}_n$ is close to θ . By Taylor Expansion, we have

$$\phi(\hat{\theta}_n) \approx \phi(\theta) + \phi'(\theta)(\hat{\theta}_n - \theta),$$

where ϕ' is the Jacobian (gradient transpose). Since this is an affine transform, we have:

$$\phi(\hat{\theta}_n) - \phi(\theta) \stackrel{d}{\to} \mathcal{N}\left(0, \frac{\phi'(\theta)\Sigma\phi'(\theta)^{\top}}{n}\right).$$

Theorem 7 (Delta Method). Let $\phi : \mathbb{R}^d \to \mathbb{R}^m$ be differentiable at θ . If

$$\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\to} \mathcal{N}(0, \Sigma),$$

then

$$\sqrt{n} \left(\phi(\hat{\theta}_n) - \phi(\theta) \right) \xrightarrow{d} \mathcal{N}(0, \phi'(\theta) \Sigma \phi'(\theta)^\top).$$

In particular,

$$\sqrt{n} \left(\phi(\hat{\theta}_n) - \phi(\theta) \right) \xrightarrow{d} \mathcal{N}(0, \phi'(\theta) \Sigma \phi'(\theta)^\top).$$

Example: Sample Variance

Let $X_i \in \mathbb{R}$, i.i.d., with finite 4th moment. Let $\hat{\sigma}^2 = \frac{1}{n} \sum (X_i - \bar{X})^2$. What is $\sqrt{n}(\hat{\sigma}^2 - \sigma^2) \stackrel{d}{\to} ?$ **Ans:** Note $\hat{\sigma}^2 = \phi(\bar{X}, \bar{X}^2)$, where $\phi(x, y) = y - x^2$. By CLT,

$$\sqrt{n}\left(\begin{pmatrix} \bar{X} \\ \bar{X}^2 \end{pmatrix} - \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}\right) \xrightarrow{d} \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \alpha_2 & \alpha_3 - \alpha_1 \alpha_2 \\ \alpha_3 - \alpha_1 \alpha_2 & \alpha_4 - \alpha_2 \end{pmatrix}\right)$$

where $\alpha_k = \mathbb{E}[X^k]$. Using $\phi'(\theta) = (-2\alpha_1, 1)$ and applying the Delta Method yield

$$\sqrt{n}(\hat{\sigma}^2 - \sigma^2) \stackrel{d}{\to} \mathcal{N}\left(0, \phi'(\theta) \Sigma \phi'(\theta)^{\top}\right).$$

What about $\frac{1}{n-1}\sum (X_i - \bar{X})^2$? Simply rewrite

$$\frac{1}{n-1}\sum (X_i - \bar{X})^2 = \frac{n}{n-1}\hat{\sigma}^2 \approx \hat{\sigma}^2,$$

which asymptotically stays the same.

Procedure

- 1. Write statistics as a function of simple statistics where we can apply the CLT.
- 2. Apply the Delta Method.

Confidence Intervals for σ :

Let

$$\hat{\alpha}_k = \frac{1}{n} \sum X_i^k, \quad k = 1, \dots, 4.$$

Then

$$\hat{\gamma}^2 = \left(-2\hat{\alpha}_1, 1\right) \hat{\Sigma} \left(-2\hat{\alpha}_1, 1\right)^\top,$$

and

$$\hat{\sigma}^2 \pm 1.96 \hat{\gamma} / \sqrt{n}$$

is the asymptotic 95% confidence interval.

Example:

$$T_n = \left(\hat{\sigma}^2, \frac{\bar{x}}{\hat{\sigma}}\right)$$

$$\sqrt{n} \left(T_n - \left(\sigma^2, \frac{\mu}{\sigma}\right)\right) \stackrel{d}{\to} ?$$