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2. Bayes-optimal estimators
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2 Sufficiency Parting Thoughts

Recall that a statistic T : X 7→ Rk is sufficient in P = {Pθ : θ ∈ Θ} if the conditional distribution
of X | T = t is the same for all θ ∈ Θ.

Note that sufficient statistics are not unique.

2.1 Example (1D Gaussian Mean)

Let X1, . . . , Xn
i.i.d.∼ N (θ, 1). From Lecture 1, the sample mean T1(X) = X is a sufficient statistic,

but so is the whole dataset T2(X) = (X1, . . . , Xn).

In this example, T1(X) is one-dimensional while T2(X) is n-dimensional. The point of sufficient
statistics is data reduction, so in a sense, T1(X) is a “better” statistic than T2(X).
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2.2 Example (Order Statistics)

Let X ∈ Rn and P = {Pn
θ : Pθ is any distribution on R}. Assuming i.i.d. samples, the sorted

vector of the samples T (X) = (X(1), . . . , X(n)) is a sufficient statistic.

By Rao-Blackwell, this result implies that order does not matter when dealing with i.i.d. samples.

3 Bayes-Optimal Estimators

In Lecture 1, we looked at two estimators for a 1D Gaussian mean:

1. The sample mean: θ̂mean = 1
n

∑N
i=1Xi.

2. The regularized sample mean: θ̂reg = θ̂mean/2.

If we plot the risk of these two estimators, we see that neither one dominates the other everywhere.
Given this ambiguity, how can we decide which estimator is “better”? One way is by comparing
their Bayes risks.

Definition 1. Let Q be a distribution on Θ. The Bayes risk of a statistical procedure A is:

RB(A;Q) =

∫
Θ

∫
X
L(A(x), θ) dPθ(x) dQ(θ)

=

∫
Θ
R(A; θ) dQ(θ)

Definition 2. A statistical procedure A⋆ is Bayes-optimal if:

RB(A
⋆;Q) = inf

A
RB(A;Q)

If A⋆ is Bayes-optimal, we say “A⋆ is Bayes” for short.

3.1 Finding Bayes Estimators

Theorem 3. A⋆ is Bayes if:

A⋆(x) ∈ argmin
a

E[L(a, θ) | X = x]

Furthermore, if A is convex, L(a; θ) is strictly convex in a, and E[L(a, θ) | X = x] < ∞ for some
a and x, then A⋆ is the unique Bayes estimator.

Proof. First, we prove optimality. We can flip the order of integration for Bayes risk to get:

RB(A;Q) =

∫
Θ

∫
X
L(A(x), θ) dPθ(x) dQ(θ)

=

∫
X

∫
Θ
L(A(x), θ) dQ(θ) dPθ(x)

= E[E[L(A(x), θ) | X = x]]
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Let A be any other procedure or estimator. By definition:

E[L(A⋆(x), θ) | X = x] ≤ E[L(A(x), θ) | X = x]

Taking the expectation of both sides, we get RB(A
⋆;Q) ≤ RB(A;Q). Therefore, A⋆ is Bayes.

Next, we prove uniqueness. Let Fx(a) = E[L(a, θ) | X = x]. By our assumptions, Fx(a) is strictly
convex in a.

=⇒ A⋆ is uniquely defined.

Now suppose we have another Bayes estimator A, so E[Fx(A(x))− Fx(A
⋆(x))] = 0.

By definition of A⋆, we have Fx(A(x))−Fx(A
⋆(x)) ≥ 0. The expectation of a non-negative random

variable is zero if and only if that random variable is zero with probability 1.

=⇒ Fx(A(x)) = Fx(A
⋆(x))

But since A⋆ uniquely minimizes Fx, we must have A = A⋆.

How can we interpret a Bayes estimator? By “being a Bayesian”:

1. We start with a prior belief in the form of a distribution Q over Θ.

2. We see evidence/data x and form a posterior distribution on θ | X = x.

3. We act optimally according to the posterior.

3.2 Example (Gaussian Mean Bayes Optimality)

Let X1, . . . , Xn
i.i.d.∼ N (θ, σ2) for some known σ. (More formally, P = {Pn

θ : Pθ is N (θ, σ2)} and
X = Rn.) Also let L(a, θ) = (a− θ)2.

Consider the Bayes risk w.r.t. prior Q : N (µ0, τ
2).

Fact 4. The conditional distribution θ | X is N
(
(1−B)X +Bµ0, (1−B)σ

2

n

)
, where B = σ2/n

σ2/n+τ2

represents how concentrated the prior was.

Fact 5. If L(a, θ) = (a− θ)2, then A⋆(x) = E[θ | X = x] is Bayes.

=⇒ A⋆(x) = (1−B)X +Bµ0 is Bayes.

Depending on µ0 and τ2, it is possible for θ̂reg to be Bayes! Suppose µ0 = 0 and τ2 = σ2

n .

Under this prior, A⋆(x) = X
2 = θ̂reg.

3.3 Example (Beta-Binomial Conjugacy)

Let X ∼ binom(n, θ), L(a, θ) = (a− θ)2, and Q be Beta(a, b).

=⇒ The posterior distribution is Beta(a+X, b+ n−X).

=⇒ A⋆(x) = E[θ | X = x] = X+a
a+b+n is Bayes.
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4 From Bayes to Minimax

Recall that minimax risk is defined as the worst-case risk:

RM (A) = sup
θ∈Θ

R(A; θ)

Observation 6. Since RB averages R, we must have RM (A) ≥ RB(A;Q) for any Q.

From this observation, we get the following inequality:

inf
A

RM (A) ≥ inf
A

RB(A;Q) ≥ RB(A
⋆;Q)

This inequality gives us a general strategy for finding minimax estimators:

1. Find some Q that maximizes RB(A
⋆;Q).

2. Find some A such that RM (A) = RB(A
⋆;Q).

3. Conclude that A is minimax (and celebrate).

4.1 Example (1D Gaussian Mean)

Claim 7. θ̂mean = 1
n

∑n
i=1Xi is minimax for X1, . . . , Xn

i.i.d.∼ N (θ, σ2).

Proof. Following the above strategy:

1. First, we want to maximize RB(A
⋆;Q).

RB(A
⋆;Q) =

∫
Θ

∫
X
(A⋆(x)− θ)2 dPθ(x) dQ(θ)

= E[E[(A⋆(x)− θ)2 | X = x]]

= E[Var(θ | X = x)]

= (1−B)
σ2

n

=⇒ RM (A) ≥ (1−B)σ
2

n

We want B → 0 to maximize the RHS. We achieve this by setting τ2 = ∞ in the prior
distribution Q.

2. Next, we note that RM (Amean) = σ2

n exactly. (The proof is left as an exercise.)

3. Therefore, θ̂mean is minimax.
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4.2 A Surprising Example (Binomial Minimax)

Let X ∼ binom(n, θ).

Claim 8. θ̂mean = X
n is not minimax. The estimator θ̂ =

X+
√

n/4

n+
√
n

yields a lower minimax risk.

Proof. Left as an exercise. (Or read Wasserman chapter 12.2.)
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