6.S951 Modern Mathematical Statistics

Fall 2024

Lecture 20 — November 26, 2024

Prof. Stephen Bates

Scribe: Haoyuan Sun

1 Outline

Agenda:

- 1. Moment estimates
- 2. Exponential family
- 3. Asymptotic normality of MLE in exponential family

Last time:

- 1. Intro to asymptotics
- 2. Delta method

2 Moment estimator

Setting: i.i.d. random variables $\{X_i\}_{i=1}^n \sim P$ and family of distributions $\{P_\theta \mid \theta \in \Theta\}$ that may not contain P.

Definition 1 (Moment estimator). Given $f : \mathcal{X} \to \mathbb{R}^k$, a <u>moment estimator</u> $\hat{\theta}$ is the value of θ that solves the equation

$$\mathbb{E}_{\theta}f(X) = \frac{1}{n}\sum_{i=1}^{n}f(X_i).$$

Example 2. Given the family of Gaussians $P_{\theta} = \mathcal{N}(\theta_1, \theta_2^2)$, then $\hat{\theta}_1 = \bar{X}, \hat{\theta}_2 = \sqrt{\bar{X}^2 - \bar{X}^2}$ are moment estimators.

Define $e_i = \Theta \to \mathbb{R}^k$ so that $e(\theta) = \mathbb{E}_{\theta} f(x)$. If e is one-to-one, then we have $\hat{\theta} = e^{-1}(\frac{1}{n}\sum_i f(X))$ (wherever the inverse is well-defined). Furthermore, if e^{-1} is differentiable, then we can employ the delta method to get the asymptotics of $\hat{\theta}$. **Proposition 3.** Let $\mu = \mathbb{E}f(x)$ and $\Sigma = \mathbb{E}(f(x) - \mu)(f(x) - \mu)^{\top}$. Suppose e^{-1} exists and differentiable at μ , then the moment estimator $\hat{\theta}$ satisfies

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} \mathcal{N}\left(0, (e^{-1})'(\mu) \Sigma(e^{-1})'(\mu)^{\top}\right).$$

Proof. Note that $\sqrt{n}(\frac{1}{n}\sum_{i}X_{i}-\mu) \xrightarrow{d} \mathcal{N}(0,\Sigma)$. And $\hat{\theta} = e^{-1}(\frac{1}{n}\sum_{i}f(X_{i}))$ is differentiable. So, the claim follows immediately from the delta method.

<u>Remark</u>: This result holds even if P is not contained in the model class.

Q: When is e^{-1} is differentiable at μ ?

A: Use inverse function theorem (or implicit function theorem).

Theorem 4 (Inverse function theorem). Suppose $\Theta \in \mathbb{R}^d$ and $e : \Theta \to \mathbb{R}^k$ is continuously differentiable at θ_0 with a non-singular derivative, then e is locally invertible and e^{-1} is locally continuously differentiable at $e(\theta_0)$.

Example 5. Consider the family of Beta distributions $P_{(\alpha,\beta)}(x) = c(\alpha,\beta)x^{\alpha-1}(1-x)^{\beta-1}$, then

$$\mathbb{E}X = \frac{\alpha}{\alpha + \beta},$$
$$\mathbb{E}X^2 = \frac{(\alpha + 1)\alpha}{(\alpha + \beta + 1)(\alpha + \beta)}$$

Note that $e(\alpha, \beta) = \mathbb{E}_{(\alpha,\beta)}(\overline{X}, \overline{X^2})$ is continuously differentiable and has non-singular inverse, so we can apply the previous proposition.

3 Exponential family

We consider a family of distributions (statistical model) with "nice" structures.

Definition 6 (Exponential family). For $\theta \in \mathbb{R}^m$, $t : \mathcal{X} \to \mathbb{R}^k$, the <u>exponential family</u> can be parameterized as

$$P_{\theta}(x) = c(\theta)h(x)e^{\theta^+ t(x)},$$

where

- $c(\theta)$ is normalizing constant,
- h(x) is the base measure,
- $\exp(\theta^{\top}t(x))$ is the "exponential tilt" that up(down)-weights based on $\theta^{\top}t(x)$.

<u>Remark 1</u>: This can be defined over either the Lebesgue or counting measure.

<u>Remark 2</u>: t(x) is a sufficient statistic and the parameter space can be defined as

$$\Theta = \left\{ \theta \mid \int h(x) \exp(\theta^{\top} t(x)) \, \mathrm{d}x < \infty \right\}.$$

Example 7. Gaussian, binomial, Poisson, and exponential distributions all belong to the exponential family.

Q: Why is the exponential family nice?

A1: They play well with independent samples. Given i.i.d. $\{X_i\}_{i=1}^n \sim P_{\theta}$, then

$$P_{\theta}(X_1, \dots, X_n) = \prod_{i=1}^n P_{\theta}(X_i) = c(\theta)^n \left(\prod_{i=1}^n h(X_i)\right) \exp\left(\theta^\top \sum_{i=1}^n t(X_i)\right)$$

Therefore, the resulting distribution also belongs to the exponential family with

$$\tilde{c}(\theta) = c(\theta)^n$$
$$\tilde{h}(x_1, \dots, x_n) = \prod_i h(x_i)$$
$$\tilde{t}(x_1, \dots, x_n) = \sum_i t(x_i)$$

and a sufficient statistics of the same dimension m.

A2: They have nice smoothness property.

Theorem 8. The function $c^{-1}: \theta \mapsto \int h(x) \exp(\theta^{\top} t(x)) dx$ is infinitely differentiable with the derivative equal to

$$\frac{\partial^p c^{-1}}{\partial^{j_1} \theta_1 \cdots \partial^{j_k} \theta_k} = \int h(x) t_1^{j_1}(x) \cdots t_k^{j_k}(x) e^{\theta^\top t(x)} \, \mathrm{d}x,$$

where $j_1 + \cdots + j_k = p$.

Corollary 9. Let $\ell_{\theta}(x) = \log P_{\theta}(x)$ and $\ell'_{\theta}(x) = t(x) - \mathbb{E}_{\theta}t(x)$ be the <u>score function</u>. Then, the score has mean 0, i.e. $\mathbb{E}_{\theta}\ell'_{\theta}(x) = 0$. Therefore, MLE is a moment estimator for the exponential family.

4 Asymptotics of MLE in exponential family

Theorem 10. Consider i.i.d. samples $X_i \sim P$. Let $\hat{\theta}$ be the MLE of the exponential family, then

$$\sqrt{n}(\hat{\theta} - \theta_0) \xrightarrow{d} \mathcal{N}(0, \mathcal{T}), \quad \mathcal{T} = (e^{-1})'(\theta_0) \operatorname{Cov}[t(x)] (e^{-1})'(\theta_0),$$

where $\theta_0 = \operatorname{argmax}_{\theta} \mathbb{E}[\ell_{\theta}(x)].$

$Proof\ sketch.$

- 1. Note that MLE is a moment estimator,
- 2. Apply delta method.

<u>Remark</u>: This result holds even if P is not in exponential family.