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Agenda:

1. Moment estimates

2. Exponential family

3. Asymptotic normality of MLE in exponential family

Last time:

1. Intro to asymptotics

2. Delta method

2 Moment estimator

Setting: i.i.d. random variables {Xi}ni=1 ∼ P and family of distributions {Pθ | θ ∈ Θ} that may

not contain P .

Definition 1 (Moment estimator). Given f : X → Rk, a moment estimator θ̂ is the value of θ

that solves the equation

Eθf(X) =
1

n

n∑
i=1

f(Xi).

Example 2. Given the family of Gaussians Pθ = N (θ1, θ
2
2), then θ̂1 = X̄, θ̂2 =

√
X2 − X̄2 are

moment estimators.

Define ei = Θ → Rk so that e(θ) = Eθf(x). If e is one-to-one, then we have θ̂ = e−1( 1n
∑

i f(X))

(wherever the inverse is well-defined). Furthermore, if e−1 is differentiable, then we can employ the

delta method to get the asymptotics of θ̂.
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Proposition 3. Let µ = Ef(x) and Σ = E(f(x) − µ)(f(x) − µ)⊤. Suppose e−1 exists and differ-

entiable at µ, then the moment estimator θ̂ satisfies

√
n(θ̂ − θ)

d−→ N
(
0, (e−1)′(µ) Σ (e−1)′(µ)⊤

)
.

Proof. Note that
√
n( 1n

∑
iXi − µ)

d−→ N (0,Σ). And θ̂ = e−1( 1n
∑

i f(Xi)) is differentiable. So, the

claim follows immediately from the delta method.

Remark: This result holds even if P is not contained in the model class.

Q: When is e−1 is differentiable at µ?

A: Use inverse function theorem (or implicit function theorem).

Theorem 4 (Inverse function theorem). Suppose Θ ∈ Rd and e : Θ → Rk is continuously differen-

tiable at θ0 with a non-singular derivative, then e is locally invertible and e−1 is locally continuously

differentiable at e(θ0).

Example 5. Consider the family of Beta distributions P(α,β)(x) = c(α, β)xα−1(1− x)β−1, then

EX =
α

α+ β
,

EX2 =
(α+ 1)α

(α+ β + 1)(α+ β)
.

Note that e(α, β) = E(α,β)(X̄,X2) is continuously differentiable and has non-singular inverse, so we

can apply the previous proposition.

3 Exponential family

We consider a family of distributions (statistical model) with “nice” structures.

Definition 6 (Exponential family). For θ ∈ Rm, t : X → Rk, the exponential family can be

parameterized as

Pθ(x) = c(θ)h(x)eθ
⊤t(x),

where

� c(θ) is normalizing constant,

� h(x) is the base measure,

� exp(θ⊤t(x)) is the “exponential tilt” that up(down)-weights based on θ⊤t(x).
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Remark 1: This can be defined over either the Lebesgue or counting measure.

Remark 2: t(x) is a sufficient statistic and the parameter space can be defined as

Θ =

{
θ |
∫

h(x) exp(θ⊤t(x)) dx < ∞
}
.

Example 7. Gaussian, binomial, Poisson, and exponential distributions all belong to the expo-

nential family.

Q: Why is the exponential family nice?

A1: They play well with independent samples. Given i.i.d. {Xi}ni=1 ∼ Pθ, then

Pθ(X1, . . . , Xn) =
n∏

i=1

Pθ(Xi) = c(θ)n

(
n∏

i=1

h(Xi)

)
exp

(
θ⊤

n∑
i=1

t(Xi)

)
.

Therefore, the resulting distribution also belongs to the exponential family with

c̃(θ) = c(θ)n

h̃(x1, . . . , xn) =
∏
i

h(xi)

t̃(x1, . . . , xn) =
∑
i

t(xi)

and a sufficient statistics of the same dimension m.

A2: They have nice smoothness property.

Theorem 8. The function c−1 : θ 7→
∫
h(x) exp(θ⊤t(x)) dx is infinitely differentiable with the

derivative equal to
∂pc−1

∂j1θ1 · · · ∂jkθk
=

∫
h(x)tj11 (x) · · · tjkk (x)eθ

⊤t(x) dx,

where j1 + · · ·+ jk = p.

Corollary 9. Let ℓθ(x) = logPθ(x) and ℓ′θ(x) = t(x) − Eθt(x) be the score function. Then, the

score has mean 0, i.e. Eθℓ
′
θ(x) = 0. Therefore, MLE is a moment estimator for the exponential

family.

4 Asymptotics of MLE in exponential family

Theorem 10. Consider i.i.d. samples Xi ∼ P . Let θ̂ be the MLE of the exponential family, then

√
n(θ̂ − θ0)

d−→ N (0, T ), T = (e−1)′(θ0) Cov[t(x)] (e
−1)′(θ0),

where θ0 = argmaxθ E[ℓθ(x)].
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Proof sketch.

1. Note that MLE is a moment estimator,

2. Apply delta method.

Remark: This result holds even if P is not in exponential family.
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