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Agenda:

1. Moment estimates
2. Exponential family

3. Asymptotic normality of MLE in exponential family

Last time:

1. Intro to asymptotics

2. Delta method

2 Moment estimator

Setting: i.i.d. random variables {X;}" ; ~ P and family of distributions {Py | § € ©} that may

not contain P.

Definition 1 (Moment estimator). Given f : X — R¥, a moment estimator 0 is the value of 0

that solves the equation

Eof(X) = %Zf(Xi)-
i=1

Example 2. Given the family of Gaussians Py = N(0y,603), then 6, = X,0, = VX2 — X2 are

moment estimators.

Define e; = © — R¥ so that e(f) = Egf(z). If e is one-to-one, then we have 6 = e (23 F(X)
(wherever the inverse is well-defined). Furthermore, if e~ is differentiable, then we can employ the

delta method to get the asymptotics of 6.



Proposition 3. Let u = Ef(x) and ¥ = E(f(x) — u)(f(x) — u)". Suppose e~ exists and differ-

entiable at p, then the moment estimator 0 satisfies

Vil —0) SN (0. (0B (1))

Proof. Note that v/n(% Y=, X; — p) 4 N(0,%). And § = e 1(2 3, f(Xy)) is differentiable. So, the

claim follows immediately from the delta method. O

Remark: This result holds even if P is not contained in the model class.

Q: When is e~! is differentiable at u?

A: Use inverse function theorem (or implicit function theorem).

Theorem 4 (Inverse function theorem). Suppose © € R? and e : © — RF is continuously differen-
tiable at Oy with a non-singular derivative, then e is locally invertible and e~ is locally continuously
differentiable at e(6p).

Example 5. Consider the family of Beta distributions P, gy(x) = ¢(a, 8)2*~1(1 — x)%~1, then

a+p
(a+1a
(a+B+1)(a+p)

EX =

9

EX? =

Note that e(a, ) = E(aﬂ)(X , X?2) is continuously differentiable and has non-singular inverse, so we

can apply the previous proposition.

3 Exponential family

We consider a family of distributions (statistical model) with “nice” structures.

Definition 6 (Exponential family). For § € R™,t : X — R*, the exponential family can be

parameterized as

Py(z) = c(@)h(x)eeTt(x),

where

e ¢(0) is normalizing constant,
e h(x) is the base measure,

e exp(0't(x)) is the “exponential tilt” that up(down)-weights based on 0't(x).



Remark 1: This can be defined over either the Lebesgue or counting measure.

Remark 2: ¢(x) is a sufficient statistic and the parameter space can be defined as

0= {9 | /h(x) exp(0t(z)) dz < oo} :

Example 7. Gaussian, binomial, Poisson, and exponential distributions all belong to the expo-

nential family.

Q: Why is the exponential family nice?
A1: They play well with independent samples. Given i.i.d. {X;} ; ~ Py, then

Py(Xy,...,X,) = ﬁPg(Xi) =c(O)" (ﬁ h(XZ-)) exp <0T it(XQ) .

Therefore, the resulting distribution also belongs to the exponential family with

and a sufficient statistics of the same dimension m.

A2: They have nice smoothness property.

Theorem 8. The function ¢! : 0 — [ h(z)exp(0"t(x))dx is infinitely differentiable with the

derivative equal to
oPc!
DIy - ik

where j1 4+ -+ + jr = p.

/h(az?)t]i1 (x)-- -ti’“(x)een(w) dz,

Corollary 9. Let lg(x) = log Py(x) and £y(x) = t(x) — Egt(z) be the score function. Then, the
score has mean 0, i.e. Egly(x) = 0. Therefore, MLE is a moment estimator for the exponential

family.

4 Asymptotics of MLE in exponential family

Theorem 10. Consider i.i.d. samples X; ~ P. Let 0 be the MLE of the exponential family, then
V(0 —60) B N(0,T), T = (e (By) Cov[t(z)] (¢ (6o),

where 0y = argmaxy E[ly(z)].



Proof sketch.

1. Note that MLE is a moment estimator,

2. Apply delta method.

Remark: This result holds even if P is not in exponential family.



