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1. M-Estimators: Overview, Consistency

Last time:

1. Moment estimates

2. Exponential family

3. Asymptotic normality of MLE in exponential family

2 M-Estimators

M-estimators are estimators defined as solutions to optimization problems.

Setting: Xi ∈ X , i = 1, . . . , n i.i.d. from P .

Definition 1 (M-estimator). Given a function Mθ(x) : Θ×X → R̄, we define Mn : Θ → R̄ as

Mn(θ) =
1

n

n∑
i=1

Mθ(Xi).

Then, the M-estimator θ̂ is defined as the minimizer of Mn(θ), i.e.,

θ̂ = argmin
θ∈Θ

Mn(θ).

We additionally define θ0 as
θ0 = argmax

θ∈Θ
EX∼P

[
Mθ(X)

]
.

We will show the following two properties about M-estimators:

1. Consistency: θ̂
p−→ θ0.

2. Asymptotic normality:
√
n(θ̂ − θ0)

d−→ N (0, σ2).
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Visualization: We visualize the setting below.
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Notice that Mn(θ)
p−→ M(θ) for each θ by the law of large numbers. As n grows, Mn gets closer to

M . The question we are interested in is: does the maximizer of Mn get close to the maximizer of
M? The answer is yes, under regularity conditions.

Example 1 (Maximum Likelihood). The maximum likelihood estimator is an M-estimator. Let pθ
denote the density of X under parameter θ. We then define Mθ as

Mθ(x) = log pθ(x).

Example 2 (Quantiles). Quantile estimation is an M-estimator by using the pinball loss function.
For quantile τ ∈ (0, 1), we define Mθ as

Mθ(x) = −(θ − x)(τ − 1{(θ−x)>0}).

Example 3 (Least Squares). We can pose the least squares estimator as an M-estimator.

Mθ((x, y)) = (y − x⊺θ)2

Example 4 (Ridge Regression). We can also add regularization to the least squares estimator to
get the ridge regression estimator.

Mθ((x, y)) = (y − x⊺θ)2 − λ∥θ∥2

Example 5 (Median Regression).

Mθ((x, y)) = −|y − x⊺θ|

Mn in this case is piecewise linear.

3 Consistency of M-Estimators

We wish to show that θ̂
p−→ θ0. Recall that Mn(θ)

p−→ M(θ). This is a good start, but is not sufficient
to prove what we want. We will need two “strengthenings” to prove consistency.
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Theorem 2. Suppose

1. Uniform convergence: supθ∈Θ|Mn(θ)−M(θ)| p−→ 0.

2. Separation: For all ϵ > 0,
sup

θ:∥θ−θ0∥>ϵ
M(θ) < M(θ0).

Remark 1. Consistency still holds for θ̂ that only approximately minimizes Mn.

Role of uniform convergence: It is possible that Mn converges to M pointwise, but the max-
imizer of Mn does not converge to the maximizer of M , as in the example below.
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We enforce uniform convergence to ensure that this does not happen.

Role of separation: Without separation, it is possible that statistical noise to Mn results in a
maximizer θ̂ that is very far away from the true maximizer θ0 even if Mn is close to M as in the
example below.
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Proof. By definition of θ̂,
Mn(θ̂) ≥ Mn(θ0)

p−→ M(θ0).
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Using the notation op(1) to denote a sequence that converges to 0 in probability, we then have

Mn(θ̂) ≥ M(θ0)− op(1).

Rearranging, subtracting M(θ̂) on both sides then using uniform convergence, we get

M(θ0)−M(θ̂) ≤ Mn(θ̂)−M(θ̂) + op(1)

≤ sup
θ∈Θ

|Mn(θ)−M(θ)|+ op(1)

p−→ 0.

We have thus proven that M(θ̂)
p−→ M(θ0).

Next, by separation (ii), we obtain that θ̂
p−→ θ0. No other maximizer can be close to θ0 by

separation.

All the work in the proof is done by assuming uniform convergence. When do we get uniform
convergence? See IDS 160. Some sufficient conditions for uniform convergence include

• Finite VC dimension

• Finite Rademachar or Gaussian complexity

We also have a more “classical” condition using compactness and continuity in the following theo-
rem.

Theorem 3. Suppose Θ is compact, Mθ and M are continuous in θ, and

E[sup
θ∈Θ

Mθ(X)] < ∞

Then,
sup
θ∈Θ

|Mn(θ)−M(θ)| p−→ 0.

Proof. See VDV.

4 Asymptotic Normality in the Exponential Family

Returning to the setting of last lecture (moment estimators and exponential family):

Theorem 4. Let Xi
i.i.d.∼ P for any data generating distribution P .

Let θ̂ be the MLE in the exponential family. Then,

√
n(θ̂ − θ0)

d−→ N (0,Γ),

where
θ0 = argmax

θ∈Θ
E
[
lθ(Xi)

]
, Γ = e′θ0

−1
[
CovP t(Xi)

](
e′θ0

−1
)⊺
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This is true even if P is not in the model, i.e.,

P ̸= Pθ for any θ ∈ Θ.

Moreover, this behavior happens for many M-estimators, not just moment estimators.

Remark 2. If P = Pθ for some θ ∈ Θ (model is well specified), then (to be proven in the HW)

e′θ0 = CovP t(Xi).

This results in cancellations in Γ and simplifies the expression to the inverse Fisher information:

Γ =
(
CovP t(Xi)

)−1
,

=
(
E
[
l̇(Xi)l̇(Xi)

⊺])−1
,

and we have used l̇ to denote the derivative.

The same story holds for M-estimators, but with the covariance term modified.
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