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2 M-Estimators

M-estimators are estimators defined as solutions to optimization problems.

Setting: X, e X,i=1,...,niid. from P.
Definition 1 (M-estimator). Given a function My(z) : © x X — R, we define M, : © — R as

M(0) = 23wy,

Then, the M-estimator 0 is defined as the minimizer of My (6), i.e.,

0= in M, (6).
arg min My (6)

We additionally define 6, as
Oy = argrglaé(EXNp [M@(X)].
€

We will show the following two properties about M-estimators:

1. Consistency: 62 0.

2. Asymptotic normality: /n(0 — 6p) 4 N(0,02).



Visualization: We visualize the setting below.
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Notice that M, (0) £ M(6) for each 6 by the law of large numbers. As n grows, M, gets closer to
M. The question we are interested in is: does the maximizer of M, get close to the maximizer of
M? The answer is yes, under regularity conditions.

Example 1 (Maximum Likelihood). The mazimum likelihood estimator is an M-estimator. Let py
denote the density of X under parameter 0. We then define My as

My(z) = log pp(x).

Example 2 (Quantiles). Quantile estimation is an M-estimator by using the pinball loss function.
For quantile T € (0,1), we define My as

Mp(z) = —(0 — 2)(T — 1{(9—2)>0})-
Example 3 (Least Squares). We can pose the least squares estimator as an M-estimator.
My((z,y)) = (y — 270)?

Example 4 (Ridge Regression). We can also add regularization to the least squares estimator to
get the ridge regression estimator.

Mp((z,y)) = (y — 270)* — A||6]?
Example 5 (Median Regression).
My((z,y)) = —ly — 270

M, in this case is piecewise linear.

3 Consistency of M-Estimators

We wish to show that § £ 6. Recall that M, (#) £ M (6). This is a good start, but is not sufficient
to prove what we want. We will need two “strengthenings” to prove consistency.



Theorem 2. Suppose

1. Uniform convergence: supgee|Mn(0) — M(8)| 2 0.

2. Separation: For all € > 0,
sup  M(0) < M(6y).
0:1|0—0o || >e€

Remark 1. Consistency still holds foré that only approximately minimizes M, .

Role of uniform convergence: It is possible that M, converges to M pointwise, but the max-
imizer of M,, does not converge to the maximizer of M, as in the example below.
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We enforce uniform convergence to ensure that this does not happen.

Role of separation: Without separation, it is possible that statistical noise to M, results in a
maximizer € that is very far away from the true maximizer 6y even if M, is close to M as in the
example below.

asymptote

Proof. By definition of 0,



Using the notation op(1) to denote a sequence that converges to 0 in probability, we then have
M, (8) > M(6p) — 0p(1).
Rearranging, subtracting M (é) on both sides then using uniform convergence, we get
M(60) — M(0) < My () — M(9) + 0,(1)
< sup| My (6) — M(0)| + 0p(1)
0cO

0.

We have thus proven that M(8) 2 M (6y).

Next, by separation (ii), we obtain that 6 2 6y. No other maximizer can be close to 6y by
separation. ]

All the work in the proof is done by assuming uniform convergence. When do we get uniform
convergence? See IDS 160. Some sufficient conditions for uniform convergence include

e Finite VC dimension

e Finite Rademachar or Gaussian complexity

We also have a more “classical” condition using compactness and continuity in the following theo-
rem.

Theorem 3. Suppose © is compact, My and M are continuous in 0, and

E[sup Mp(X)] < o0
0cO

Then,

sup| M, (0) — M(8)] 2 0.
0coO

Proof. See VDV. 0

4 Asymptotic Normality in the Exponential Family

Returning to the setting of last lecture (moment estimators and exponential family):

Theorem 4. Let X; W p for any data generating distribution P.
Let 0 be the MLE in the exponential family. Then,

~

V(6 — 6) % N(0,T),

where . AT
0y = arg Igleaé(E[lg(Xi)], I=ey, [COVP t(Xi)} (ego_ )

4



This is true even if P is not in the model, i.e.,
P # Py forany 6 € O.
Moreover, this behavior happens for many M-estimators, not just moment estimators.
Remark 2. If P = Py for some 6 € © (model is well specified), then (to be proven in the HW)
ep, = Covp t(X;).

This results in cancellations in I' and simplifies the expression to the inverse Fisher information:

= (COVP t(XZ-)>_1,

= (E[ixaix)1)
and we have used | to denote the derivative.

The same story holds for M-estimators, but with the covariance term modified.



