6.S951 Modern Mathematical Statistics Fall 2024

Lecture 22 — December 3, 2024

Prof. Stephen Bates

Scribe: Oswin So

1 Outline

Agenda:

1. M-Estimators: Overview, Consistency

Last time:

- 1. Moment estimates
- 2. Exponential family
- 3. Asymptotic normality of MLE in exponential family

2 M-Estimators

M-estimators are estimators defined as solutions to optimization problems.

Setting: $X_i \in \mathcal{X}, i = 1, \ldots, n$ i.i.d. from P .

Definition 1 (M-estimator). Given a function $M_{\theta}(x) : \Theta \times \mathcal{X} \to \bar{\mathbb{R}}$, we define $M_n : \Theta \to \bar{\mathbb{R}}$ as

$$
M_n(\theta) = \frac{1}{n} \sum_{i=1}^n M_\theta(X_i).
$$

Then, the M-estimator $\hat{\theta}$ is defined as the minimizer of $M_n(\theta)$, i.e.,

$$
\hat{\theta} = \arg\min_{\theta \in \Theta} M_n(\theta).
$$

We additionally define θ_0 as

$$
\theta_0 = \arg \max_{\theta \in \Theta} \mathbb{E}_{X \sim P} \big[M_\theta(X) \big].
$$

We will show the following two properties about M-estimators:

- 1. Consistency: $\hat{\theta} \stackrel{p}{\rightarrow} \theta_0$.
- 2. Asymptotic normality: $\sqrt{n}(\hat{\theta} \theta_0) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$.

Visualization: We visualize the setting below.

Notice that $M_n(\theta) \stackrel{p}{\to} M(\theta)$ for each θ by the law of large numbers. As n grows, M_n gets closer to M. The question we are interested in is: does the maximizer of M_n get close to the maximizer of M? The answer is yes, under regularity conditions.

Example 1 (Maximum Likelihood). The maximum likelihood estimator is an M-estimator. Let p_{θ} denote the density of X under parameter θ . We then define M_{θ} as

$$
M_{\theta}(x) = \log p_{\theta}(x).
$$

Example 2 (Quantiles). Quantile estimation is an M-estimator by using the pinball loss function. For quantile $\tau \in (0,1)$, we define M_{θ} as

$$
M_{\theta}(x) = -(\theta - x)(\tau - \mathbf{1}_{\{(\theta - x) > 0\}}).
$$

Example 3 (Least Squares). We can pose the least squares estimator as an M-estimator.

$$
M_{\theta}((x, y)) = (y - x^{\mathsf{T}}\theta)^2
$$

Example 4 (Ridge Regression). We can also add regularization to the least squares estimator to get the ridge regression estimator.

$$
M_{\theta}((x, y)) = (y - x^{\mathsf{T}}\theta)^2 - \lambda ||\theta||^2
$$

Example 5 (Median Regression).

$$
M_{\theta}((x, y)) = -|y - x^{\intercal}\theta|
$$

 M_n in this case is piecewise linear.

3 Consistency of M-Estimators

We wish to show that $\hat{\theta} \stackrel{p}{\to} \theta_0$. Recall that $M_n(\theta) \stackrel{p}{\to} M(\theta)$. This is a good start, but is not sufficient to prove what we want. We will need two "strengthenings" to prove consistency.

Theorem 2. Suppose

- 1. Uniform convergence: $\sup_{\theta \in \Theta} |M_n(\theta) M(\theta)| \stackrel{p}{\to} 0$.
- 2. Separation: For all $\epsilon > 0$,

$$
\sup_{\theta: \|\theta-\theta_0\|>\epsilon} M(\theta) < M(\theta_0).
$$

Remark 1. Consistency still holds for $\hat{\theta}$ that only approximately minimizes M_n .

Role of uniform convergence: It is possible that M_n converges to M pointwise, but the maximizer of M_n does not converge to the maximizer of M , as in the example below.

We enforce uniform convergence to ensure that this does not happen.

Role of separation: Without separation, it is possible that statistical noise to M_n results in a maximizer $\hat{\theta}$ that is very far away from the true maximizer θ_0 even if M_n is close to M as in the example below.

Proof. By definition of $\hat{\theta}$,

```
M_n(\hat{\theta}) \geq M_n(\theta_0) \stackrel{p}{\to} M(\theta_0).
```
Using the notation $o_p(1)$ to denote a sequence that converges to 0 in probability, we then have

$$
M_n(\hat{\theta}) \ge M(\theta_0) - o_p(1).
$$

Rearranging, subtracting $M(\hat{\theta})$ on both sides then using uniform convergence, we get

$$
M(\theta_0) - M(\hat{\theta}) \le M_n(\hat{\theta}) - M(\hat{\theta}) + o_p(1)
$$

\n
$$
\le \sup_{\theta \in \Theta} |M_n(\theta) - M(\theta)| + o_p(1)
$$

\n
$$
\xrightarrow{p} 0.
$$

We have thus proven that $M(\hat{\theta}) \stackrel{p}{\rightarrow} M(\theta_0)$.

Next, by separation (ii), we obtain that $\hat{\theta} \stackrel{p}{\to} \theta_0$. No other maximizer can be close to θ_0 by separation. \Box

All the work in the proof is done by assuming uniform convergence. When do we get uniform convergence? See IDS 160. Some sufficient conditions for uniform convergence include

- Finite VC dimension
- Finite Rademachar or Gaussian complexity

We also have a more "classical" condition using compactness and continuity in the following theorem.

Theorem 3. Suppose Θ is compact, M_{θ} and M are continuous in θ , and

$$
\mathbb{E}[\sup_{\theta \in \Theta} M_{\theta}(X)] < \infty
$$

Then,

$$
\sup_{\theta \in \Theta} |M_n(\theta) - M(\theta)| \xrightarrow{p} 0.
$$

Proof. See VDV.

4 Asymptotic Normality in the Exponential Family

Returning to the setting of last lecture (moment estimators and exponential family):

Theorem 4. Let $X_i \stackrel{i.i.d.}{\sim} P$ for any data generating distribution P. Let $\hat{\theta}$ be the MLE in the exponential family. Then,

$$
\sqrt{n}(\hat{\theta} - \theta_0) \stackrel{d}{\rightarrow} \mathcal{N}(0, \Gamma),
$$

where

$$
\theta_0 = \arg \max_{\theta \in \Theta} \mathbb{E} \big[l_\theta(X_i) \big], \qquad \Gamma = e'_{\theta_0}^{-1} \Big[\text{Cov}_P \ t(X_i) \Big] \Big(e'_{\theta_0}^{-1} \Big)^{\mathsf{T}}
$$

 \Box

This is true even if P is not in the model, i.e.,

$$
P \neq P_{\theta} \quad \text{ for any } \theta \in \Theta.
$$

Moreover, this behavior happens for many M-estimators, not just moment estimators.

Remark 2. If $P = P_{\theta}$ for some $\theta \in \Theta$ (model is well specified), then (to be proven in the HW)

$$
e_{\theta_0}' = \text{Cov}_P \ t(X_i).
$$

This results in cancellations in Γ and simplifies the expression to the inverse Fisher information:

$$
\Gamma = \left(\text{Cov}_{P} t(X_i)\right)^{-1},
$$

=
$$
\left(\mathbb{E}\left[i(X_i)i(X_i)^{\mathsf{T}}\right]\right)^{-1},
$$

and we have used \dot{l} to denote the derivative.

The same story holds for M-estimators, but with the covariance term modified.