
6.S951 Modern Mathematical Statistics Fall 2024

Lecture 23 — December 5, 2024

Prof. Stephen Bates

Scribe: Charlie Cowen-Breen

Outline

Today: Asymptotic Normality of M-estimators

• Main goal

– Heuristic derivation

– Formal Statements

• Examples

– Linear regression

– Robust standard error (CIs)

– Logistic regression

Recap (asymptotics):

• CLT, Slutsky

• Delta method

• Moment estimators

• M-estimator consistency

– Uniform convergence + separation - IDS.160

1 Main results

Setting:

X1 . . . Xn
i.i.d.∼ P on X

mθ(xi) : Θ×X −→ R

Mn(θ) =
1

n

n∑
i=1

mθ(xi)

M(θ) = E[mθ(xi)]
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θ̂ = argmaxθ∈ΘMn(θ)

θ0 = argmaxθ∈ΘM(θ)

Assume

Ψθ(x) := ṁθ(x) =
∂

∂θ
mθ(x)

exists. Let θ̂ solve
1

n

n∑
i=1

Ψθ(xi) = 0

and θ0 solve
EΨθ(xi) = 0.

Then we have

Theorem 1 (Main result, informal statement). Assume θ̂
p→ θ0 and regularity conditions. Then

√
n(θ̂ − θ0)

d→ N (0,Γ)

where

Γ = V −1
θ0

E
[
Ψθ0Ψ

⊤
θ0

] (
V −1
θ0

)⊤

and Vθ0 is the derivative of the map θ 7→ EΨθ(xi).

Heuristic derivation. Main idea: Taylor expansion, and apply CLT and LNN. Set

Ψ̃n(θ) =
1

n

n∑
i=1

Ψθ(xi)

Ψ̃(θ) = EΨθ(xi)

Now, θ̂ is near θ0 by consistency, so we Taylor expand around θ0:

0 = Ψ̃n(θ̂) = Ψ̃n(θ0) + (θ̂ − θ0)
˙̃Ψn(θ0) +

1

2
(θ̂ − θ0)

2 ¨̃Ψn(θ̃)︸ ︷︷ ︸
lower order Op(1/n), for some θ̃ ∈ [θ0, θ̂]

√
n(θ̂ − θ0) =

[
˙̃Ψn(θ0)

]−1

︸ ︷︷ ︸
LLN

·
(
−
√
nΨ̃(θ0)

)
︸ ︷︷ ︸

CLT

→ E[Ψ̇θ(xi)]

Theorem 2 (5.4 of vdV: Main result, formal statement). Suppose θ 7→ Ψθ(x) is twice continuously
differentiable for θ ∈ R. Suppose θ0 satisfies

EΨθ0(xi) = 0 EΨθ0(xi)
2 < ∞
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and EΨ̇θ0(xi) exists and is nonzero for all θ in a neighborhood of θ0. Further suppose |Ψ̈θ(x)| < f(x)

for some integrable function f , and θ̃
p→ θ0.

1 Then the conclusions of the main result hold:

√
n(θ̂ − θ0)

d→ N (0,Γ)

where

Γ = V −1
θ0

E
[
Ψθ0Ψ

⊤
θ0

] (
V −1
θ0

)⊤

and Vθ0 is the derivative of the map θ 7→ EΨθ(xi).

Proof. Following the heuristic derivation,

√
nΨ̃n(θ0) =

√
n(θ̂ − θ0)

 ˙̃Ψn(θ0) +
1

2
(θ̂ − θ0)

¨̃Ψ(θ̃)︸ ︷︷ ︸
op(1)


from which the result follows. NB: there could be issues with the above equation somewhere—
inconclusive from class.

We now state a generalized result which does not require twice differentiability.

Theorem 3 (5.21 of vdV: Generalization to non-twice-differentiable θ 7→ Ψθ). For θ in an open
set Θ ⊂ Rd, suppose that the map x 7→ Ψθ(x) satisfies

∥Ψθ1(x)−Ψθ2(x)∥ ≤ f(x)∥θ1 − θ2∥

for all θ1 and θ2 in a neighborhood of θ0, for some square-integrable f , i.e. Ef(x)2 < ∞. Assume

that E∥Ψθ0∥2 < ∞, and θ 7→ EΨθ(xi) differentiable at θ0 with derivative Vθ0. Then if θ̂
p→ θ0, the

conclusions of the main theorem hold:

√
n(θ̂ − θ0)

d→ N (0,Γ)

where

Γ = V −1
θ0

E
[
Ψθ0Ψ

⊤
θ0

] (
V −1
θ0

)⊤
.

2 Examples

2.1 Linear regression

Suppose (Xi, Yi) ∈ Rd+1. In linear regression, we consider M-estimation with

mθ((x, y)) = −(y − θ⊤x)2

Thus we have

θ̂ = argmaxθ −
1

n

n∑
i=1

(Yi − θ⊤Xi)
2

1Is this necessary?
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and
Ψθ((x, y)) = 2(y − θ⊤x) · x

We now verify that the conditions of the theorem hold. Suppose that the sample space is bounded,
∥θ∥ < C. In this case, Ψ is

• Lipschitz ✓

• E
[
Ψθ0Ψ

⊤
θ0

]
= E

[
4(Yi − θ⊤0 Xi)

2XiX
⊤
i

]
< ∞

• EΨθ(Xi) = E2Y X − E2θ⊤X ·X
=⇒ Vθ0 = −2EXiX

⊤
i , which we shall denote Σxx.

Since the conditions of the theorem hold, we conclude that

√
n(θ̂ − θ0)

d→ N (0,Γ)

where
Γ = Σ−1

xx E
[
(Yi −X⊤

i θ)2XiX
⊤
i

]
︸ ︷︷ ︸

W

Σ−1
xx .

2.2 Robust standard errors

Plug in estimates for Σxx and W to get confidence intervals for θ0. The plug-ins are

Σ̂xx =
1

n

n∑
i=1

XiX
⊤
i

Ŵ =
1

n

n∑
i=1

(Yi −X⊤
i θ)2XiX

⊤
i

Γ̂ = Σ̂−1
xx Ŵ Σ̂−1

xx

C.f. bootstrap here. Then

√
nΓ̂−1/2(θ̂ − θ0)

d→ N (0, I) =⇒ CI for θ0,j : θ̂j ± q(Γj,j)
1/2/

√
n

For fixed X, the bound works only when the model is actually correct (i.e. linear), with

σ2(X⊤X)−1
jj
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