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1 Outline

Agenda:

1. Optimality of maximum likelihood

(a) Fisher information & MLE

(b) Hardness bounds

2. Bonus: Course summary

Last time:

1. Asymptotic normality of M-estimators

(a) Twice-differentiable (with proof) and general Lipschitz (without proof) results

(b) Examples

i. Linear regression

ii. Robust standard errors

Recap (Asymptotics): So far, our discussion of asymptotic statistics has featured:

1. Using the central limit theorem, Slutsky’s lemma, and the delta method to construct and
manipulate asymptotic, approximate distributions of estimators

2. Moment estimators

3. M-estimators, with a focus on proving consistency as well as asymptotic normality

Today, we turn our focus to the Maximum Likelihood Estimator (MLE) as a particularly important
instance of an M-estimator.
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2 Fisher Information & MLE

Setting: Consider observations Xi
i.i.d.∼ P , Xi ∈ X , for i = 1, . . . , n. Suppose that we have a

model class {Pθ : θ ∈ Θ ⊂ Rd}, which may or may not contain the true distribution P . For brevity,
let ℓθ(X) ≜ log pθ(X). The MLE is then defined as:

θ̂MLE ≜ n−1
n∑

i=1

ℓθ(Xi)

That is, seen as a special instance of our general framework for M-estimation, we can set

Mθ(Xi) = ℓθ(Xi)

from which we obtain θ̂MLE by maximizing Mn(θ) = n−1
∑n

i=1Mθ(Xi), as usual.

Target of MLE: The first question we would like to answer is what the target of θ̂MLE is, i.e.,
what the estimator converges to as n → ∞. To answer this question, recall first that M(θ) ≜
EpMθ(Xi). Then, plugging in the setting above and subtracting Ep log p(Xi), we have that

M(θ) = Ep log pθ(Xi)

= EP log
pθ(Xi)

p(Xi)
+ Ep log p(Xi)

= −KL(P∥Pθ) + C

This observation immediately yields the following two results.

Proposition 1. If P is in the model class (i.e., there is some θ0 ∈ Θ such that Pθ0 = P ), then
M(θ) attains its maximum uniquely at θ0.

Remark 2. One way to see this is to compare the statement above to Gibb’s Inequality from infor-
mation theory, which states that KL(Q∥P ) ≥ KL(P∥P ) = 0 for all distributions Q,P . Thus, max-
imizing M(θ) is per the above equivalent to minimizing KL(P∥Pθ), which–per Gibb’s Inequality–is
in fact minimized precisely when Pθ = P . What remains to show is uniqueness of the maximum,
which follows from the convexity of KL in its first argument.

Proposition 3. If P is not in the model class, then M(θ) attains its maximum at a θ0 ∈ Θ for
which KL(P∥Pθ0) is minimized.

Asymptotic normality & Fisher Information: Our generic results from last time showed
that M-estimators are asymptotically normal, and that we have an expression for their variance,
under some suitable regularity assumptions. Applying these results in this setting, we have that

√
n(θ̂MLE − θ0)

d−→ N (0,Γ)

where
Γ = (Eℓ̈θ0X)−1(Eℓ̇θ0(X)ℓ̇θ0(X)T )(Eℓ̈θ0(X)T )−1

Note that this holds even for misspecified P , i.e., when P is not in the model class.
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(a) Low Fisher information at θ0.

0

(
)

(b) High Fisher information at θ0.

Figure 1: Illuminating examples of instances where one would obtain high or low values of the Fisher
information Iθ0 . The more pronounced the ”peak” at θ0 is, the higher the Fisher information.

Definition 4 ((Expected) Fisher Information). The (expected) fisher information given a distri-
bution Pθ is defined as

Iθ = Eθ ℓ̇θ(X)ℓ̇θ(X)T

Intuitively, the Fisher Information encodes the information each Xi has about θ.

Remark 5. Note that the Fisher Information is precisely the middle term of Γ above, when the
expectation is taken over θ.

We are now ready to prove our first result relating the Fisher Information to θ̂MLE .

Proposition 6. Under sufficient regularity (see vdV 5.39), if there is some θ0 ∈ Θ such that
P = Pθ0, then

E
[
−ℓ̈θ0(Xi)

]
= Eℓ̇θ0(Xi)ℓ̇θ0(Xi)

T = Iθ0

which implies that Γ = I−1
θ0

in the above; i.e, θ̂MLE ∼̇ N
(
θ0, I

−1
θ0

/n
)
.

See Figure 1 for a visualization of the intuition behind this proposition.

Informal proof. Suppose that we have enough regularity to exchange integrals and derivatives.1

Then (∫
ṗθ(x)

)
j

=
∂

∂θj

∫
pθ(x) =

∂

∂θj
1 = 0

for all θ. Similarly, (∫
p̈θ(x)

)
j,k

=
∂

∂θk

(∫
ṗθ(x)

)
j

= 0

1This holds, for example, when the Dominated or Monotone Convergence Theorems apply; however, while this is
sufficient for the property in question to hold it is not strictly necessary.
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per the above. Taking these two observations together, it is easy to verify that

Eθ0 ℓ̇θ0(Xi) = Eθ0

ṗθ0(Xi)

pθ0(Xi)

=

∫
ṗθ0(Xi)

= 0

Eθ0 ℓ̈θ0(Xi) = Eθ0

p̈θ0(Xi)

pθ0(Xi)
−
(
ṗθ0(Xi)

pθ0(Xi)

)(
ṗθ0(Xi)

pθ0(Xi)

)T

=

(∫
p̈θ0(Xi)

)
− Eθ0 ℓ̇θ0(Xi)ℓ̇θ0(Xi)

= −Eθ0 ℓ̇θ0(Xi)ℓ̇θ0(Xi)

= −Iθ0

from which we thus conclude that θ̂MLE ∼̇ N
(
θ0, I

−1
θ0

/n
)
.

3 Optimality of MLE

Anecdote: a lot of this lower bound theory was developed at Berkeley by Le Cam, although the MLE
has been studied for much longer than that. These are surprisingly strong results and should thus
be considered to be of significant importance.

Definition 7 (Asymptotic relative efficiency). We say that an estimator θ̂1 is asymptotically more
efficient than another estimator θ̂2 if Γ1 < Γ2 in the positive semi-definite ordering2 and

√
n(θ̂1 − θ0)

d−→ N (0,Γ1)

√
n(θ̂2 − θ0)

d−→ N (0,Γ2)

Theorem 8 (The almost-everywhere convolution theorem; vdV 8.9). Suppose that the family
{Pθ : θ ∈ Θ} is QMD (see vdV section 7.1, reproduced here as Definition 11 in the Appendix).
Suppose also that θ̂ is an estimator such that for all θ0 ∈ Θ0, there is a distribution Lθ0 such that

√
n(θ̂ − θ0)

d−→ Lθ0

Then, for almost all θ0 ∈ Θ0,

Lθ0 = N
(
0, I−1

θ0

)
∗Dθ0

for some distribution Dθ0. That is,

θ̂ ∼ N
(
θ0, I

−1
θ0

/n
)
+ Z/

√
n

where Z ∼ Dθ0 (independently of the Gaussian).

2i.e., xTΓ1x < xTΓ2x for all x.
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Note: proving this result requires tools that are more advanced than we have had time to cover in
this class. See section 8.9 of vdV for a full treatment of the theorem.

The conclusion of this theorem is rather strong, but then it also required us to make a rather
strong assumption about the limiting behavior of the estimator sequence. Fortunately, there is a
spiritually similar, complementary theorem, which yields a weaker conclusion but also requires a
weakener set of assumptions:

Theorem 9 (Local asymptotic minimax theorem; vdV 8.11). Suppose as before that the family
in question is QMD. Suppose also that at θ0, the Fisher information Iθ0 exists. Let then θ̂ be any
estimator, and take L : Rd → R≥0 to be a convex, bowl-shaped loss. Then

sup
I⊂RD : |I|<∞

lim inf
n→∞

sup
h∈I

E(θ0+h/
√
n)L(

√
n(θ̂ − θ0 − h/

√
n)) ≥ EL(Z)

where Z ∼ N
(
0, I−1

θ0

)
.

It is a helpful exercise to compare the formal statement to the name of the theorem: the ”local”
part refers to the shifted target, θ0 + h/

√
n; the ”asymptotic” part is of course the limit,; and

”minimax” is due to taking the infimum (i.e., asserting that no other estimator could do better).
That leaves us with the two suprema; the intuition is that one may construct pathological values of
h for which the bound does not hold, but given a large enough set of such choices it will certainly
hold for some h in that set.

Remark 10. Spiritually, by combining these two theorems we obtain a pretty strong result that says
that we cannot estimate θ0 better than up to Gaussian noise with covariance equal to the inverse
Fisher information (assuming our estimator satisfies some regularity conditions). Given that this
is precisely what θ̂MLE does (by Proposition 6) these results thus prove the optimality of the MLE.
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4 Bonus: Quick Course Summary

This course has consisted of four chunks:

1. Statistical decision theory: as a general framework, with a handful of precise results within
that. The goal was to develop a language to talk about abstract statistical problems (testing,
estimation, prediction) precisely, so that we can prove results about them. We touched on
sufficiency of statistics, as well as minimax and Bayes optimality; optimality of least squares
(in the Gaussian model); and optimal testing (in particular, the Neyman-Pearson lemma).

2. Statistical inference procedures: in particular, confidence intervals (via the CLT, concentra-
tion inequalities like Hoeffding’s, and the bootstrap); confidence bands for CDFs (the DKW
inequality); the relationship between testing ⇐⇒ CIs (i.e., that CIs contain exactly those
parameters which are consistent with the data); p−values (as measures of how extreme an
observation is compared to the reference distribution); and permutation tests as a way of
testing whether two distributions are the same without making specific assumptions about
the distributions at hand.

3. Topics in advanced inference, in particular: predictive inference, explicitly in the linear model
case and using conformal prediction as a black-box/generic method in the more general case;
risk control as a variant of conformal prediction with a different criterium; as well as multiple
hypothesis testing (Bonferroni to control the family-wise error rate–i.e., the probability of
making any false discoveries–as well as the Benjamini-Hoeffberg procedure, which controls
the false discovery rate, i.e., the proportion of discoveries in the final rejection set which are
actually false).

4. Asymptotics (last five lectures): here the goal was to give approximate distributions of es-
timators; questions of importance then include optimality of the approximation as well as
how to use these approximate distributions to give confidence intervals (e.g., giving a CI for
a parameter by plugging in an estimate of the variance of the limiting distribution).
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Appendix

Definition 11 (Differentiability in Quadratic Mean; vdW 7.1). We say that the model class {Pθ :
θ ∈ Θ ⊂ Rd} is differentiable in Quadratic Mean (or QMD, for short) at θ if there is a vector of
measurable functions ℓ̇θ = (ℓ̇θ,1, . . . , ℓ̇θ,d) such that as h → 0,∫ [

√
pθ+h −

√
pθ −

1

2
hT ℓ̇θ

√
pθ

]2
dµ = o(∥h∥2)

(where pθ is the density of Pθ with respect to the measure µ).
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