6.S951 Modern Mathematical Statistics

Fall 2024

Lecture 3 — September 12, 2024

Prof. Stephen Bates

Scribe: Andrew Yao

1 Outline

Agenda:

- 1. Minimax continued
- 2. Admissibility
- 3. Gaussian linear model
 - Bayes and minimax (and sufficiency!)

Last time:

- 1. Statistical decision theory framework
- 2. Sufficiency
- 3. Bayes-optimal estimators
- 4. Minimax optimality
 - Hardness lower bound via Bayes
 - Bare-hands upper bound (come up with estimator that hits lower bound)

So far the goal has been to develop formal language to discuss statistical problems.

2 Minimax continued

Minimax risk is always bigger than Bayes risk.

Corollary 1 (Bayes with constant risk over Θ is minimax). Let A^* be Bayes optimal with respect to Q. If $R(A^*; \theta)$ is constant in θ then A^* is minimax optimal.

Proof. $R_M(A^*) = \sup_{\theta \in \Theta} R(A^*; \theta) = \int_{\theta \in \Theta} R(A^*; \theta) dQ(\theta) = R_B(A^*; Q)$ and $R_M(A) \ge R_B(A; Q) \ge R_B(A^*; Q)$ for all estimators A.

Example (binomial minimax). Suppose $X \sim \text{Binom}(n, \theta)$ and $L(a, \theta) = (a - \theta)^2$. Suppose $A^{\text{mean}}(x) = \frac{x}{n}$. Then $R(A^{\text{mean}}; \theta) = \frac{\theta(1-\theta)}{n}$ because A^{mean} is unbiased. This estimator is not minimax so we want to improve upon it.

Consider an estimator $A'(x) = a\frac{x}{n} + b$ for $a, b \in \mathbb{R}$. Then,

$$R(A';\theta) = \text{variance} + \text{bias}^2 = \text{Var}(A') + (\mathbb{E}[A'(x)] - \theta)^2 = \frac{a^2}{n}\theta(1-\theta) + ((a-1)\theta + b)^2$$

Choose $a = \frac{\sqrt{n}}{\sqrt{n+1}}$ and $b = \frac{1}{2(\sqrt{n+1})}$. Observe that $R(A'; \theta) = \frac{1}{4(\sqrt{n+1})^2}$ for all θ . Furthermore,

$$A'(x) = \frac{\sqrt{n}}{\sqrt{n+1}} \cdot \frac{x}{n} + \frac{1}{\sqrt{n+1}} \cdot \frac{1}{2}$$

is a convex combination of $\frac{x}{n}$ and $\frac{1}{2}$.

Observe that A' is Bayes when $Q \sim \text{Beta}\left(\frac{\sqrt{n}}{2}, \frac{\sqrt{n}}{2}\right)$. From Corollary 1, A' is minimax optimal. Figure 1 depicts the risk values for A^{mean} and A' for a large value of n.

Figure 1: The red curve is $R(A^{\text{mean}}; \theta)$ and the blue line is $R(A'; \theta)$. The value of *n* depicted is n = 225. As *n* increases the blue line will approach the vertex of the red curve.

3 Admissibility

Definition 2. An estimator A is *inadmissible* if there exists A' such that $R(A'; \theta) \leq R(A; \theta)$ for all $\theta \in \Theta$ and there exists $\theta \in \Theta$ such that $R(A'; \theta) < R(A; \theta)$. Furthermore, A is *admissible* if

A is not inadmissible.

Theorem 3. A unique Bayes estimator A^* with respect to prior Q is admissible.

Proof. Suppose A^* is not admissible for the sake of contradiction. Then there exists $A \neq A^*$ such that $R(A;\theta) \leq R(A^*;\theta)$ for all $\theta \in \Theta$. Then

$$R_B(A;Q) = \int R(A;\theta) dQ(\theta) = \int R(A^*;\theta) dQ(\theta) = R_B(A^*;Q).$$

Since $A \neq A^*$, this contradicts the uniqueness of A^* .

Example (Gaussian mean). $\hat{\theta}^{\text{median}}$ is not admissible since $\hat{\theta}^{\text{median}}$ is dominated by $\hat{\theta}^{\text{mean}}$. However, $\hat{\theta}^{\text{reg}}$ is admissible by Theorem 3 because the estimator is Bayes. Furthermore $\hat{\theta}^{\text{mean}}$ is admissible although the proof is not obvious.

Gaussian linear model 4

4.1 Model

Suppose
$$Y_i = Z_i^T \theta + \varepsilon_i$$
, $\varepsilon_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$, and $z_i \in \mathbb{R}^d$ is fixed for $1 \le i \le n$ and $\theta \in \Theta = \mathbb{R}^d$. In matrix form, $\vec{Y} = Z\theta + \vec{\varepsilon}$ where $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n$, $\vec{\varepsilon} = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix} \in \mathbb{R}^n$, and $Z = \begin{pmatrix} -z_1^T - \\ \vdots \\ -z_n^T - \end{pmatrix} \in \mathbb{R}^{n \times d}$.
Equivalently $\vec{Y} \sim \mathcal{N}(Z\theta, \sigma^2 L_n)$

Equivalently, $Y \sim \mathcal{N}(Z\theta, \sigma^2 I_n)$.

Example (Least-squares estimator (OLS)). $\hat{\theta}^{\text{LS}} = \operatorname{argmin}_{\theta \in \Theta} ||Y - Z\theta||_2^2 = (Z^T Z)^{-1} Z^T Y.$ Observe $Z = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ implies that $\hat{\theta}^{\text{LS}} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ so the least-squares estimator generalizes the

mean estimator.

Proposition 4. $\hat{\theta}^{LS}$ is the maximum likelihood estimator in the Gaussian linear model.

Proof. First observe that $P_{\theta}(y) \propto \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (y_i - z_i^T\theta)^2\right) = \exp\left(-\frac{1}{2\sigma^2}\|Y - Z\theta\|_2^2\right)$ and then use the previous example.

Proposition 5. $\hat{\theta}^{LS} \sim \mathcal{N}(\theta, (Z^T Z)^{-1} \sigma^2).$

Proof. $\hat{\theta}^{LS}$ is multivariate Gaussian because it is a linear function of the multivariate Gaussian distribution Y. We have that

$$\mathbb{E}[\hat{\theta}^{\text{LS}}] = \mathbb{E}[(Z^T Z)^{-1} Z^T Y] = (Z^T Z)^{-1} Z^T \mathbb{E}[Y] = (Z^T Z)^{-1} Z^T Z \theta = \theta,$$

$$\operatorname{Var}[\hat{\theta}^{\text{LS}}] = \operatorname{Var}[(Z^T Z)^{-1} Z^T (Z \theta + \varepsilon)] = (Z^T Z)^{-1} Z^T Z (Z^T Z)^{-1} \sigma^2 = (Z^T Z)^{-1} \sigma^2,$$

which finishes the proof.

4.2 Anderson's lemma

Definition 6. A set $S \subset \mathbb{R}^d$ is symmetric if -S = S. A function $\ell : \mathbb{R}^d \to \mathbb{R}_{\geq 0}$ is bowl-shaped if its level sets $\{\theta : \ell(\theta) \leq c\}$ are convex and symmetric for all $c \in \mathbb{R}_{\geq 0}$.

Example. Examples of bowl-shaped functions are $\ell(x) = ||x||_2^2$ and $\ell(x) = ||x||_1$. Furthermore there exist non-convex functions f such that $\ell(x) = f(||x||_2)$ is bowl-shaped.

Theorem 7 (Anderson's lemma). Suppose $\ell : \mathbb{R}^d \to \mathbb{R}_{\geq 0}$ is bowl-shaped and $\varepsilon \sim \mathcal{N}(0, \Sigma) \in \mathbb{R}^d$. Then $R_1(x) = \mathbb{E}[\ell(x + \vec{\varepsilon})]$ is minimized at x = 0.

Proof. The convex case is straightforward. For the general case please refer to the textbook. \Box

4.3 Bayes in Gaussian linear model

Suppose $Q \sim \mathcal{N}(0, \tau^2 I_d)$ is the prior and $L(a, \theta) = \ell(a - \theta)$ for bowl-shaped ℓ is the loss function. The posterior is

$$\mathbb{P}(\theta|Y) \propto \exp\left(-\frac{1}{2\sigma^2} \|Y - Z\theta\|_2^2 - \frac{1}{2\tau^2} \|\theta\|_2^2\right).$$

- 1. Note that $\log(\mathbb{P}(\theta|Y)) = C \frac{1}{2\sigma^2} ||Y Z\theta||_2^2 \frac{1}{2\tau^2} ||\theta||_2^2$, where C is a constant, is a quadratic in θ so the posterior is Gaussian.
- 2. Since the posterior is Gaussian, its mean is its mode. Denote this quantity by $\hat{\theta}_{\text{posterior}}$. We have that

$$\hat{\theta}_{\text{posterior}} = \operatorname{argmin}_{\theta \in \mathbb{R}^d} \left(\frac{1}{2\sigma^2} \|Y - Z\theta\|_2^2 + \frac{1}{2\tau^2} \|\theta\|_2^2 \right) = \operatorname{argmin}_{\theta \in \mathbb{R}^d} \left(\|Y - Z\theta\|_2^2 + \frac{\sigma^2}{\tau^2} \|\theta\|_2^2 \right),$$

which is a ridge-regression problem. Denotes its solution by $\hat{\theta}^{\text{ridge}}$.

3. To compute the posterior variance, we only need to inspect the degree two terms of $\log(\mathbb{P}(\theta|Y))$. Particularly,

$$\log(\mathbb{P}(\theta|Y)) = -\frac{1}{2\sigma^2}\theta^T z^T z\theta - \frac{1}{2\tau^2}\theta^T \theta + c_1^T \theta + c_2$$

for some constants $c_1 \in \mathbb{R}^d$ and $c_2 \in \mathbb{R}$. Then, the posterior variance, which we denote by $\Sigma_{\tau} \in \mathbb{R}^{d \times d}$, is $\Sigma_{\tau} = \left(\frac{Z^T Z}{\sigma^2} + \frac{I_d}{\tau^2}\right)^{-1}$.

5 Conclusions

- 1. $\theta | Y$ has distribution $\mathcal{N}(\hat{\theta}^{\mathrm{ridge}}, \Sigma_{\tau})$.
- 2. The Bayes optimal estimator satisfies $\hat{\theta}^{\text{Bayes}} = \hat{\theta}^{\text{ridge}}$ by Anderson's lemma.
- 3. The Bayes risk equals $R_B(\hat{\theta}^{\text{Bayes}}) = \mathbb{E}[\ell(\Sigma_{\tau}^{\frac{1}{2}}W)]$, where $W \sim \mathcal{N}(0, I_d)$.