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1 Outline

Agenda:

1. Minimax continued

2. Admissibility

3. Gaussian linear model

• Bayes and minimax (and sufficiency!)

Last time:

1. Statistical decision theory framework

2. Sufficiency

3. Bayes-optimal estimators

4. Minimax optimality

• Hardness lower bound via Bayes

• Bare-hands upper bound (come up with estimator that hits lower bound)

So far the goal has been to develop formal language to discuss statistical problems.

2 Minimax continued

Minimax risk is always bigger than Bayes risk.

Corollary 1 (Bayes with constant risk over Θ is minimax). Let A∗ be Bayes optimal with respect
to Q. If R(A∗; θ) is constant in θ then A∗ is minimax optimal.

Proof. RM (A∗) = supθ∈ΘR(A∗; θ) =
∫
θ∈ΘR(A∗; θ)dQ(θ) = RB(A

∗;Q) and RM (A) ≥ RB(A;Q) ≥
RB(A

∗;Q) for all estimators A.
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Example (binomial minimax). Suppose X ∼ Binom(n, θ) and L(a, θ) = (a − θ)2. Suppose

Amean(x) = x
n . Then R(Amean; θ) = θ(1−θ)

n because Amean is unbiased. This estimator is not
minimax so we want to improve upon it.

Consider an estimator A′(x) = ax
n + b for a, b ∈ R. Then,

R(A′; θ) = variance + bias2 = Var(A′) + (E[A′(x)]− θ)2 =
a2

n
θ(1− θ) + ((a− 1)θ + b)2.

Choose a =
√
n√

n+1
and b = 1

2(
√
n+1)

. Observe that R(A′; θ) = 1
4(
√
n+1)2

for all θ. Furthermore,

A′(x) =

√
n√

n+ 1
· x
n
+

1√
n+ 1

· 1
2

is a convex combination of x
n and 1

2 .

Observe that A′ is Bayes when Q ∼ Beta
(√

n
2 ,

√
n
2

)
. From Corollary 1, A′ is minimax optimal.

Figure 1 depicts the risk values for Amean and A′ for a large value of n.
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Figure 1: The red curve is R(Amean; θ) and the blue line is R(A′; θ). The value of n depicted is
n = 225. As n increases the blue line will approach the vertex of the red curve.

3 Admissibility

Definition 2. An estimator A is inadmissible if there exists A′ such that R(A′; θ) ≤ R(A; θ) for
all θ ∈ Θ and there exists θ ∈ Θ such that R(A′; θ) < R(A; θ). Furthermore, A is admissibile if
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A is not inadmissible.

Theorem 3. A unique Bayes estimator A∗ with respect to prior Q is admissible.

Proof. Suppose A∗ is not admissible for the sake of contradiction. Then there exists A ̸= A∗ such
that R(A; θ) ≤ R(A∗; θ) for all θ ∈ Θ. Then

RB(A;Q) =

∫
R(A; θ)dQ(θ) =

∫
R(A∗; θ)dQ(θ) = RB(A

∗;Q).

Since A ̸= A∗, this contradicts the uniqueness of A∗.

Example (Gaussian mean). θ̂median is not admissible since θ̂median is dominated by θ̂mean.
However, θ̂reg is admissible by Theorem 3 because the estimator is Bayes. Furthermore θ̂mean is
admissible although the proof is not obvious.

4 Gaussian linear model

4.1 Model

Suppose Yi = ZT
i θ + εi, εi

i.i.d.∼ N (0, σ2), and zi ∈ Rd is fixed for 1 ≤ i ≤ n and θ ∈ Θ = Rd. In

matrix form, Y⃗ = Zθ + ε⃗ where Y =

y1
...
yn

 ∈ Rn, ε⃗ =

ε1
...
εn

 ∈ Rn, and Z =

−zT1 −
...

−zTn−

 ∈ Rn×d.

Equivalently, Y⃗ ∼ N (Zθ, σ2In).

Example (Least-squares estimator (OLS)). θ̂LS = argminθ∈Θ∥Y − Zθ∥22 = (ZTZ)−1ZTY .

Observe Z =

1
...
1

 implies that θ̂LS = 1
n

∑n
i=1 Yi so the least-squares estimator generalizes the

mean estimator.

Proposition 4. θ̂LS is the maximum likelihood estimator in the Gaussian linear model.

Proof. First observe that Pθ(y) ∝ exp
(
− 1

2σ2

∑n
i=1(yi − zTi θ)

2
)
= exp

(
− 1

2σ2 ∥Y − Zθ∥22
)
and then

use the previous example.

Proposition 5. θ̂LS ∼ N (θ, (ZTZ)−1σ2).

Proof. θ̂LS is multivariate Gaussian because it is a linear function of the multivariate Gaussian
distribution Y . We have that

E[θ̂LS] = E[(ZTZ)−1ZTY ] = (ZTZ)−1ZTE[Y ] = (ZTZ)−1ZTZθ = θ,

Var[θ̂LS] = Var[(ZTZ)−1ZT (Zθ + ε)] = (ZTZ)−1ZTZ(ZTZ)−1σ2 = (ZTZ)−1σ2,

which finishes the proof.
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4.2 Anderson’s lemma

Definition 6. A set S ⊂ Rd is symmetric if −S = S. A function ℓ : Rd → R≥0 is bowl-shaped
if its level sets {θ : ℓ(θ) ≤ c} are convex and symmetric for all c ∈ R≥0.

Example. Examples of bowl-shaped functions are ℓ(x) = ∥x∥22 and ℓ(x) = ∥x∥1. Furthermore
there exist non-convex functions f such that ℓ(x) = f(∥x∥2) is bowl-shaped.

Theorem 7 (Anderson’s lemma). Suppose ℓ : Rd → R≥0 is bowl-shaped and ε ∼ N (0,Σ) ∈ Rd.
Then R1(x) = E[ℓ(x+ ε⃗)] is minimized at x = 0.

Proof. The convex case is straightforward. For the general case please refer to the textbook.

4.3 Bayes in Gaussian linear model

Suppose Q ∼ N (0, τ2Id) is the prior and L(a, θ) = ℓ(a− θ) for bowl-shaped ℓ is the loss function.
The posterior is

P(θ|Y ) ∝ exp

(
− 1

2σ2
∥Y − Zθ∥22 −

1

2τ2
∥θ∥22

)
.

1. Note that log(P(θ|Y )) = C − 1
2σ2 ∥Y − Zθ∥22 − 1

2τ2
∥θ∥22, where C is a constant, is a quadratic

in θ so the posterior is Gaussian.

2. Since the posterior is Gaussian, its mean is its mode. Denote this quantity by θ̂posterior. We
have that

θ̂posterior = argminθ∈Rd

(
1

2σ2
∥Y − Zθ∥22 +

1

2τ2
∥θ∥22

)
= argminθ∈Rd

(
∥Y − Zθ∥22 +

σ2

τ2
∥θ∥22

)
,

which is a ridge-regression problem. Denotes its solution by θ̂ridge.

3. To compute the posterior variance, we only need to inspect the degree two terms of log(P(θ|Y )).
Particularly,

log(P(θ|Y )) = − 1

2σ2
θT zT zθ − 1

2τ2
θT θ + cT1 θ + c2

for some constants c1 ∈ Rd and c2 ∈ R. Then, the posterior variance, which we denote by

Στ ∈ Rd×d, is Στ =
(
ZTZ
σ2 + Id

τ2

)−1
.

5 Conclusions

1. θ|Y has distribution N (θ̂ridge,Στ ).

2. The Bayes optimal estimator satisfies θ̂Bayes = θ̂ridge by Anderson’s lemma.

3. The Bayes risk equals RB(θ̂
Bayes) = E[ℓ(Σ

1
2
τ W )], where W ∼ N (0, Id).
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