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1 Outline

Agenda:

1. Minimax continued
2. Admissibility
3. Gaussian linear model

e Bayes and minimax (and sufficiency!)

Last time:

1. Statistical decision theory framework
2. Sufficiency
3. Bayes-optimal estimators
4. Minimax optimality
e Hardness lower bound via Bayes

e Bare-hands upper bound (come up with estimator that hits lower bound)

So far the goal has been to develop formal language to discuss statistical problems.

2 Minimax continued

Minimax risk is always bigger than Bayes risk.
Corollary 1 (Bayes with constant risk over © is minimax). Let A* be Bayes optimal with respect

to Q. If R(A*;0) is constant in 0 then A* is minimazx optimal.

Proof. Ryr(A*) = supyeg R(A*;0) f%@ R(A*;6)dQ(0) = Rp(A*;Q) and Ry;(A) > Rp(A;Q) >
Rp(A*; Q) for all estimators A. O



Example (binomial minimax). Suppose X ~ Binom(n, ) and L(a,0) = (a — 6)%. Suppose

Amean(g) = £ Then R(A™;0) = @ because A™" is unbiased. This estimator is not
minimax so we want to improve upon it.

Consider an estimator A'(x) = a® 4 b for a,b € R. Then,

a2

R(A’;0) = variance + bias? = Var(4') + (E[A'(z)] — 0)% = 39(1 —0)+ ((a—1)8+ b)*.

Choose a = \/ﬁl and b = 2(\/%+1). Observe that R(A';0) = m for all . Furthermore,

A(x) N 1 1

BV SR

is a convex combination of % and %

Observe that A’ is Bayes when @ ~ Beta (4, @) From Corollary 1, A’ is minimax optimal.
Figure 1 depicts the risk values for A™¢® and A’ for a large value of n.
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Figure 1: The red curve is R(A™"; ) and the blue line is R(A’;0). The value of n depicted is
n = 225. As n increases the blue line will approach the vertex of the red curve.

3 Admissibility

Definition 2. An estimator A is inadmissible if there exists A" such that R(A’;0) < R(A;0) for
all 8 € © and there exists § € © such that R(A’;0) < R(A;0). Furthermore, A is admissibile if



A is not inadmaissible.

Theorem 3. A unique Bayes estimator A* with respect to prior Q is admissible.

Proof. Suppose A* is not admissible for the sake of contradiction. Then there exists A # A* such
that R(A;6) < R(A*;0) for all € ©. Then

R(4:Q) = [ B(4:0)iQ(0) = [ R(A"0)dQ(0) = Ry(4'5Q).
Since A # A*, this contradicts the uniqueness of A*. O

gmedian o 116t admissible since #™edian ig dominated by @mean,

émean

Example (Gaussian mean).
However, 6™ is admissible by Theorem 3 because the estimator is Bayes. Furthermore
admissible although the proof is not obvious.

is

4 Gaussian linear model

4.1 Model

Suppose Y; = Z,L»TH + &5, & s N(0,0?%), and z; € R is fixed for 1 < i <nand § € ©® = R? In
Y1 €1 —z{ —

matrix form, ¥ = Z0 +&where Y = [ : | eR", &= [ : [ e R? and Z = : € R4,
Yn En -z —

Equivalently, Y ~ N (Z6,021,,).
Example (Least-squares estimator (OLS)). 8“5 = argming.o|Y — Z0|3 = (272)"12"Y.
1

Observe Z = | : | implies that

1
mean estimator.

oLS — %ZLI Y; so the least-squares estimator generalizes the

Proposition 4. 6L5 is the mazimum likelihood estimator in the Gaussian linear model.

Proof. First observe that Py(y) o exp (—giz Y ory (yi — 21 0)?) = exp (— 52z [|Y — Z0||3) and then
use the previous example. O

Proposition 5. 025 ~ N(0, (27 Z) 10?).

Proof. 65 is multivariate Gaussian because it is a linear function of the multivariate Gaussian
distribution Y. We have that

E[0") =E[(272)'2"Y] = (2"2)' Z"E[Y] = (2" 2)' 2" 26 = 0,
Var[0™S] = Var((Z272) 127 (20 + )| = (272) ' 27 2(27 2) 7 0? = (27 2) o,

which finishes the proof. O



4.2 Anderson’s lemma

Definition 6. A set S C R? is symmetric if —S = S. A function { : R? — Rs is bowl-shaped
if its level sets {6 : €(0) < ¢} are conver and symmetric for all ¢ € R>y.

Example. Examples of bowl-shaped functions are ¢(x) = ||z||3 and ¢(z) = ||z||;. Furthermore
there exist non-convex functions f such that ¢(x) = f(||z||2) is bowl-shaped.

Theorem 7 (Anderson’s lemma). Suppose £ : RY — Rsq is bowl-shaped and ¢ ~ N(0,%) € RZ.
Then Ri(z) = E[l(z + €)] is minimized at x = 0.

Proof. The convex case is straightforward. For the general case please refer to the textbook. [

4.3 Bayes in Gaussian linear model

Suppose Q ~ N(0,721,) is the prior and L(a,f) = £(a — 0) for bowl-shaped £ is the loss function.
The posterior is

1 1
P(O]Y) < exp | =5 [IY — Z6))5 — == 16]5 ) -
20 2T

1. Note that log(P(0]Y)) = C — ﬁHY — 703 - 2%”0”%, where C' is a constant, is a quadratic
in # so the posterior is Gaussian.

2. Since the posterior is Gaussian, its mean is its mode. Denote this quantity by éposterior. We
have that

. 1 1 . o?
oo = argmingcsa (5 5l1V = 2018 + 515 1913 ) = avgmingcs (1Y = 2613 + %5 1018).

which is a ridge-regression problem. Denotes its solution by gridee.

3. To compute the posterior variance, we only need to inspect the degree two terms of log(P(0]Y")).
Particularly,

1 1
log(P(A]Y)) = _ﬁeTsze — 2729% + ¢+ ¢y

for some constants ¢; € R? and ¢y € R. Then, the posterior variance, which we denote by
-1
e RO is s, = (£F +4)

o2 72

5 Conclusions

1. 0|Y has distribution A/ (g"dege 3 ).

2. The Bayes optimal estimator satisfies gBayes — gridee by Anderson’s lemma.

R 1
3. The Bayes risk equals Rg(05%°) = E[¢(S2W)], where W ~ N(0, I,).



