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1 Outline

Agenda:

1. Minimax in Gaussian linear model

2. Least-squares with model misspecification

Last time:

1. Statistical decision theory

2. Sufficiency

3. Bayes optimality, minimax optimality, admissibility

4. Example: Bayes and minimax in Gaussian linear model

Next two weeks:

1. Statistical decision theory for prediction (“statistical learning theory”)

2. Optimal hypothesis testing

3. Information-theoretic minimax lower bounds

Remarks on homework:

1. New version on Canvas corrects typos

2. Check Piazza
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2 Minimax optimality in Gaussian linear model

Recall Setup for Gaussian linear model:

Y⃗ ∈ Rn

Z ∈ Rn×d, fixed and constant matrix

ε⃗ ∈ Rn

ε⃗ ∼ N (0n, Inσ
2)

θ ∈ Rd

Y⃗ = Zθ + ε⃗

L(a, θ) = ℓ(a− θ), loss function, ℓ bowl-shaped

θ̂LS = argmin
θ′

||Y⃗ − Zθ′||2, least squares estimator

=⇒ θ̂LS = (ZTZ)−1ZT Y⃗ , θ̂LS ∼ N (θ, (ZTZ)−1σ2)

We analyzed the Bayes optimal procedure with prior Q = N (0, τ2Id) for θ:

R∗
B(Q) = inf

A
RB(A,Q)

= E[ℓ(Σ1/2
τ W )],

where W ∼ N (0, Id) and Στ = ((ZTZ)/σ2 + Id/τ
2)−1.

Today, we aim to show that θ̂LS is minimax in the Gaussian linear model.

Theorem 1. Suppose Z has rank d. Then θ̂LS is minimax optimal in the Gaussian linear model.

Proof. Given the distribution of θ̂LS , we know that the risk of θ̂LS does not depend on θ:

E[L(θ̂LS , θ)] = E[ℓ((ZTZ/σ2)−1/2W )],

since θ̂LS − θ ∼ N (0, (ZTZ)−1σ2). Hence, the minimax risk of θ̂LS equals this constant risk:

RM (θ̂LS) = sup
θ

E[ℓ((ZTZ/σ2)−1/2W )]

= E[ℓ((ZTZ/σ2)−1/2W )].

Therefore, it suffices to show that RM (θ̂) ≥ E[ℓ((ZTZ/σ2)−1/2W )] for any estimator θ̂.

We split the proof into 3 cases.

Case 1: d = n and Z = In . Consider the risk of the Bayes estimator A∗ for prior Q =
N (0d, τ

2Id). We have:

RB(A
∗, Q) = E

[
ℓ((ZTZ/σ2 + Idτ

2)−1/2W )
]

(1)

= E
[
ℓ((1/σ2 + 1/τ2)−1/2IdW )

]
since Z = Id = In. (2)
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Since the Bayes risk at any prior Q is a lower bound for the minimax risk of any procedure θ̂,

RM (θ̂) ≥ RB(A
∗, Q)

= E
[
ℓ((1/σ2 + 1/τ2)−1/2IdW )

]
.

Taking the limit as τ → ∞ and using the monotone convergence theorem,

RM (θ̂) ≥ E[ℓ(σIdW )],

as desired.

Case 2: d = n and Z ̸= In. Let θ̂(Y⃗ ) be a generic estimator. The risk of θ̂ is

R(θ̂, θ) = E[ℓ(θ̂(Zθ + ε︸ ︷︷ ︸
Y⃗

)− θ)]

= E[ℓ̃(Zθ̂(Zθ + ε)− Zθ)], where ℓ̃(x) = ℓ(Z−1x).

Consider the “rotated” Gaussian linear model problem where:

• We view the parameter as Zθ instead of θ

• We view the constant design matrix as In instead of Z

• We use the loss L(a, θ) = ℓ̃(a− θ). One can check that ℓ̃ is bowl-shaped.

Note that this rotated problem fits into case 1. Then the risk in this rotated problem when the
estimator is Zθ̂ : Rn → Rd is

RI,ℓ̃(Zθ̂, Zθ) = E[ℓ̃(Zθ̂ − Zθ)],

where the subscripts in RI,ℓ̃ indicate that this is the risk in the rotated problem. Hence,

R(θ̂, θ) = RI,ℓ̃(Zθ̂, Zθ)

=⇒ sup
θ

R(θ̂, θ) = sup
θ

RI,ℓ̃(Zθ̂, Zθ)

= sup
Zθ

RI,ℓ̃(Zθ̂, Zθ), Z invertible so sup over θ same as sup over Zθ

≥ E[ℓ̃((ITn In/σ2)−1/2W )] by case 1

= E[ℓ(Z−1σInW ] by def of ℓ̃

= E[ℓ((ZTZ/σ2)−1/2W )] since Z−1σInW ∼ N (0n, (Z
TZ/σ2)−1).

So RM (θ̂) ≥ E[ℓ((ZTZ/σ2)−1/2W )] as desired.
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Case 3: d < n. This case will reduce to case 2 by sufficiency.

Recall: Y⃗ = Zθ + ε⃗.

Define U = Z(ZTZ)−1/2. U has d orthonormal columns and these columns span the column space
of Z. So UUT projects onto the column space of Z.

Lemma 2. UT Y⃗ is sufficient.

Suppose the lemma holds for now. We have UT Y⃗ ∼ N ((ZTZ)1/2θ, σ2Id). Since UT Y⃗ ∈ Rd, we
have reduced from n dimensions to d dimensions. We can therefore view UT Y⃗ as coming from a
d−dimensional Guassian linear model with parameter θ and constant matrix (ZTZ)1/2. For any
estimator A : Rd → Rd, case 2 implies

sup
θ

Rd(A; θ) ≥ E[ℓ((((ZTZ)1/2)T ((ZTZ)1/2)/σ2)−1/2W )]

= E[ℓ((ZTZ/σ2)−1/2)W ],

where Rd denotes the risk in the reduced, d-dimensional model.

Because UT Y⃗ is sufficient in the n-dimensional model, for every estimator θ̂(Y ) : Rn → Rd in the
original model, there is an estimator A : Rd → Rd (possibly randomized) in the reduced model
with the same risk. Hence,

sup
θ

R(θ̂; θ) = sup
θ

Rd(A; θ)

≥ E[ℓ((ZTZ/σ2)−1/2)W ],

as desired.

Now, a proof sketch for the lemma.

Proof. Decompose ε by projecting it onto the column space of Z: ε = ε1+ε2 where ε1 ∈ colspace(Z)
and ε2 ∈ colspace(Z)⊥. Because the orthogonal projection operation is linear, ε1 and ε2 jointly
Gaussian and uncorrelated. Marginally, ε1 is the Gaussian restricted to the column space of Z,
and ε2 is the Gaussian restricted to the orthogonal complement of the column space of Z. Since
ε1 and ε2 are jointly Gaussian and uncorrelated, ε1 ⊥ ε2. Therefore, the distribution of the data
conditional on Zθ+ ε1 does not depend on θ since ε2 is independent Gaussian noise. So Zθ+ ε1 is
sufficient for θ.

It remains to show that UT Y⃗ is sufficient for θ. Note that Zθ + ε1 is the orthogonal projection of
Zθ + ε on the column space of Z: Zθ already lies in the column space of Z and ε1 is defined to
have this property. This orthogonal projection is exactly UUT Y⃗ . So UT Y⃗ is sufficient (since Z is
a known non-random matrix, U is also known and non-random).
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This concludes the proof of the theorem.

3 Least-squares with a misspecified model

Consider an iid sample of (Zi, Yi) ∈ Rd+1 from the statistical model:

P = {Pn
θ : Pθ is a distribution on Rd+1 with finite fourth moments}.

In particular, Zi is random. What is the behavior of the least-squares estimator in this setting?

Definition 3. (Least squares target) The best linear prediction of Yi given Zi is

β∗ = argmin
β

E[(Yi − ZT
i β)

2]
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β∗ is a sensible target to think about in many situations even when the data are not linear.

Proposition 4. (Consistency of least-squares for β∗)

β̂LS = (ZTZ)−1ZT Y⃗
p−→ β∗

Proof. This argument is a proof outline.

Divide by n in the numerator and denominator:

β̂LS = (ZTZ/n)−1ZT Y⃗ /n.

By the law of large numbers and a continuous mapping theorem,

(ZTZ/n)−1 p−→ E[ZiZ
′
i]
−1 ∈ Rd×d

ZT Y⃗ /n
p−→ E[YiZi] ∈ Rd

=⇒ β̂LS p−→ E[ZiZ
′
i]
−1E[YiZi].

One can show that β∗ = E[ZiZ
′
i]
−1E[YiZi].

We will later derive an approximate distribution for β̂LS .

Claim 5.

β̂LS ∼approx N (β∗,Σ/n).

We will derive Σ in part 3 of the course.
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Compared to its behavior in the Gaussian linear model, the least-squares estimator in a misspecified
model has larger total variance. Variance includes the original noise (ε) and the noise coming from
misspecificiation (where the best linear predictor diverges from the conditional expectation of Yi
given Zi). However, as the 1/n factor in the approximate variance suggests, β̂LS remains root-n
consistent.
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