6.S951 Modern Mathematical Statistics Fall 2024

Lecture 4 — September 17, 2024

Prof. Stephen Bates

Scribe: Russell Legate-Yang

1 Outline

Agenda:

- 1. Minimax in Gaussian linear model
- 2. Least-squares with model misspecification

Last time:

- 1. Statistical decision theory
- 2. Sufficiency
- 3. Bayes optimality, minimax optimality, admissibility
- 4. Example: Bayes and minimax in Gaussian linear model

Next two weeks:

- 1. Statistical decision theory for prediction ("statistical learning theory")
- 2. Optimal hypothesis testing
- 3. Information-theoretic minimax lower bounds

Remarks on homework:

- 1. New version on Canvas corrects typos
- 2. Check Piazza

2 Minimax optimality in Gaussian linear model

Recall Setup for Gaussian linear model:

 $\vec{Y} \in \mathbb{R}^n$ $Z \in \mathbb{R}^{n \times d}$, fixed and constant matrix $\vec{\varepsilon} \in \mathbb{R}^n$ $\vec{\varepsilon} \sim \mathcal{N}(0_n, I_n \sigma^2)$ $\theta \in \mathbb{R}^d$ $\vec{Y} = Z\theta + \vec{\varepsilon}$ $L(a, \theta) = \ell(a - \theta)$, loss function, ℓ bowl-shaped $\hat{\theta}^{LS} = \argmin_{\theta'} ||\vec{Y} - Z\theta'||^2$, least squares estimator θ $\implies \hat{\theta}^{LS} = (Z^T Z)^{-1} Z^T \vec{Y}, \ \hat{\theta}^{LS} \sim \mathcal{N}(\theta, (Z^T Z)^{-1} \sigma^2)$

We analyzed the Bayes optimal procedure with prior $Q = \mathcal{N}(0, \tau^2 I_d)$ for θ :

$$
R_B^*(Q) = \inf_A R_B(A, Q)
$$

=
$$
\mathbb{E}[\ell(\Sigma_\tau^{1/2} W)],
$$

where $W \sim \mathcal{N}(0, I_d)$ and $\Sigma_{\tau} = ((Z^T Z)/\sigma^2 + I_d/\tau^2)^{-1}$.

Today, we aim to show that $\hat{\theta}^{LS}$ is minimax in the Gaussian linear model.

Theorem 1. Suppose Z has rank d. Then $\hat{\theta}^{LS}$ is minimax optimal in the Gaussian linear model.

Proof. Given the distribution of $\hat{\theta}^{LS}$, we know that the risk of $\hat{\theta}^{LS}$ does not depend on θ :

$$
\mathbb{E}[L(\hat{\theta}^{LS}, \theta)] = \mathbb{E}[\ell((Z^T Z/\sigma^2)^{-1/2} W)],
$$

since $\hat{\theta}^{LS} - \theta \sim \mathcal{N}(0, (Z^T Z)^{-1} \sigma^2)$. Hence, the minimax risk of $\hat{\theta}^{LS}$ equals this constant risk:

$$
R_M(\hat{\theta}^{LS}) = \sup_{\theta} \mathbb{E}[\ell((Z^T Z/\sigma^2)^{-1/2} W)]
$$

=
$$
\mathbb{E}[\ell((Z^T Z/\sigma^2)^{-1/2} W)].
$$

Therefore, it suffices to show that $R_M(\hat{\theta}) \geq \mathbb{E}[\ell((Z^T Z/\sigma^2)^{-1/2} W)]$ for any estimator $\hat{\theta}$. We split the proof into 3 cases.

Case 1: $d = n$ and $Z = I_n$. Consider the risk of the Bayes estimator A^* for prior $Q =$ $\mathcal{N}(0_d, \tau^2 I_d)$. We have:

$$
R_B(A^*, Q) = \mathbb{E}\left[\ell((Z^T Z/\sigma^2 + I_d \tau^2)^{-1/2} W)\right]
$$
\n(1)

$$
= \mathbb{E}\left[\ell((1/\sigma^2 + 1/\tau^2)^{-1/2}I_dW)\right] \text{ since } Z = I_d = I_n. \tag{2}
$$

Since the Bayes risk at any prior Q is a lower bound for the minimax risk of any procedure θ ,

$$
R_M(\hat{\theta}) \ge R_B(A^*, Q)
$$

= $\mathbb{E}\left[\ell((1/\sigma^2 + 1/\tau^2)^{-1/2}I_dW)\right].$

Taking the limit as $\tau \to \infty$ and using the monotone convergence theorem,

$$
R_M(\hat{\theta}) \geq \mathbb{E}[\ell(\sigma I_d W)],
$$

as desired.

Case 2: $d = n$ and $Z \neq I_n$. Let $\hat{\theta}(\vec{Y})$ be a generic estimator. The risk of $\hat{\theta}$ is

$$
R(\hat{\theta}, \theta) = \mathbb{E}[\ell(\hat{\theta}(\underline{Z\theta + \varepsilon}) - \theta)]
$$

=
$$
\mathbb{E}[\tilde{\ell}(Z\hat{\theta}(Z\theta + \varepsilon) - Z\theta)], \text{ where } \tilde{\ell}(x) = \ell(Z^{-1}x).
$$

Consider the "rotated" Gaussian linear model problem where:

- We view the parameter as $Z\theta$ instead of θ
- We view the constant design matrix as I_n instead of Z
- We use the loss $L(a, \theta) = \tilde{\ell}(a \theta)$. One can check that $\tilde{\ell}$ is bowl-shaped.

Note that this rotated problem fits into case 1. Then the risk in this rotated problem when the estimator is $Z\hat{\theta} : \mathbb{R}^n \to \mathbb{R}^d$ is

$$
R_{I,\tilde{\ell}}(Z\hat{\theta}, Z\theta) = \mathbb{E}[\tilde{\ell}(Z\hat{\theta} - Z\theta)],
$$

where the subscripts in $R_{I,\tilde{\ell}}$ indicate that this is the risk in the rotated problem. Hence,

$$
R(\hat{\theta}, \theta) = R_{I, \tilde{\ell}}(Z\hat{\theta}, Z\theta)
$$

\n
$$
\implies \sup_{\theta} R(\hat{\theta}, \theta) = \sup_{\theta} R_{I, \tilde{\ell}}(Z\hat{\theta}, Z\theta)
$$

\n
$$
= \sup_{Z\theta} R_{I, \tilde{\ell}}(Z\hat{\theta}, Z\theta), Z \text{ invertible so sup over } \theta \text{ same as sup over } Z\theta
$$

\n
$$
\geq \mathbb{E}[\tilde{\ell}((I_n^T I_n/\sigma^2)^{-1/2}W)] \text{ by case } 1
$$

\n
$$
= \mathbb{E}[\ell(Z^{-1}\sigma I_nW] \text{ by def of } \tilde{\ell}
$$

\n
$$
= \mathbb{E}[\ell((Z^T Z/\sigma^2)^{-1/2}W)] \text{ since } Z^{-1}\sigma I_nW \sim \mathcal{N}(0_n, (Z^T Z/\sigma^2)^{-1}).
$$

So $R_M(\hat{\theta}) \geq \mathbb{E}[\ell((Z^T Z/\sigma^2)^{-1/2}W)]$ as desired.

Case 3: $d < n$. This case will reduce to case 2 by sufficiency.

Recall:
$$
\vec{Y} = Z\theta + \vec{\varepsilon}
$$
.

Define $U = Z(Z^T Z)^{-1/2}$. U has d orthonormal columns and these columns span the column space of Z. So UU^T projects onto the column space of Z.

Lemma 2. $U^T\vec{Y}$ is sufficient.

Suppose the lemma holds for now. We have $U^T\vec{Y} \sim \mathcal{N}((Z^TZ)^{1/2}\theta, \sigma^2I_d)$. Since $U^T\vec{Y} \in \mathbb{R}^d$, we have reduced from *n* dimensions to *d* dimensions. We can therefore view $U^T\vec{Y}$ as coming from a d–dimensional Guassian linear model with parameter θ and constant matrix $(Z^T Z)^{1/2}$. For any estimator $A : \mathbb{R}^d \to \mathbb{R}^d$, case 2 implies

$$
\sup_{\theta} R_d(A; \theta) \ge \mathbb{E}[\ell(((Z^T Z)^{1/2})^T ((Z^T Z)^{1/2})/\sigma^2)^{-1/2} W)]
$$

= $\mathbb{E}[\ell((Z^T Z/\sigma^2)^{-1/2}) W],$

where R_d denotes the risk in the reduced, d-dimensional model.

Because $U^T\vec{Y}$ is sufficient in the *n*-dimensional model, for every estimator $\hat{\theta}(Y): \mathbb{R}^n \to \mathbb{R}^d$ in the original model, there is an estimator $A : \mathbb{R}^d \to \mathbb{R}^d$ (possibly randomized) in the reduced model with the same risk. Hence,

$$
\sup_{\theta} R(\hat{\theta}; \theta) = \sup_{\theta} R_d(A; \theta)
$$

$$
\geq \mathbb{E}[\ell((Z^T Z/\sigma^2)^{-1/2})W],
$$

as desired.

Now, a proof sketch for the lemma.

Proof. Decompose ε by projecting it onto the column space of Z: $\varepsilon = \varepsilon_1 + \varepsilon_2$ where $\varepsilon_1 \in \text{colspace}(Z)$ and $\varepsilon_2 \in \text{colspace}(Z)^{\perp}$. Because the orthogonal projection operation is linear, ε_1 and ε_2 jointly Gaussian and uncorrelated. Marginally, ε_1 is the Gaussian restricted to the column space of Z, and ε_2 is the Gaussian restricted to the orthogonal complement of the column space of Z. Since ε_1 and ε_2 are jointly Gaussian and uncorrelated, $\varepsilon_1 \perp \varepsilon_2$. Therefore, the distribution of the data conditional on $Z\theta + \varepsilon_1$ does not depend on θ since ε_2 is independent Gaussian noise. So $Z\theta + \varepsilon_1$ is sufficient for θ .

It remains to show that $U^T\vec{Y}$ is sufficient for θ . Note that $Z\theta + \varepsilon_1$ is the orthogonal projection of $Z\theta + \varepsilon$ on the column space of Z: $Z\theta$ already lies in the column space of Z and ε_1 is defined to have this property. This orthogonal projection is exactly $UU^T\vec{Y}$. So $U^T\vec{Y}$ is sufficient (since Z is a known non-random matrix, U is also known and non-random).

 \Box

 \Box

This concludes the proof of the theorem.

3 Least-squares with a misspecified model

Consider an iid sample of $(Z_i, Y_i) \in \mathbb{R}^{d+1}$ from the statistical model:

 $\mathcal{P} = \{P_{\theta}^n : P_{\theta} \text{ is a distribution on } \mathbb{R}^{d+1} \text{ with finite fourth moments}\}.$

In particular, Z_i is random. What is the behavior of the least-squares estimator in this setting?

Definition 3. (Least squares target) The best linear prediction of Y_i given Z_i is

$$
\beta^* = \argmin_{\beta} \mathbb{E}[(Y_i - Z_i^T \beta)^2]
$$

 β^* is a sensible target to think about in many situations even when the data are not linear. **Proposition 4.** (Consistency of least-squares for β^*)

$$
\hat{\beta}^{LS} = (Z^T Z)^{-1} Z^T \vec{Y} \xrightarrow{p} \beta^*
$$

Proof. This argument is a proof outline.

Divide by n in the numerator and denominator:

$$
\hat{\beta}^{LS} = (Z^T Z/n)^{-1} Z^T \vec{Y} / n.
$$

By the law of large numbers and a continuous mapping theorem,

$$
(Z^T Z/n)^{-1} \stackrel{p}{\to} \mathbb{E}[Z_i Z_i']^{-1} \in \mathbb{R}^{d \times d}
$$

$$
Z^T \vec{Y}/n \stackrel{p}{\to} \mathbb{E}[Y_i Z_i] \in \mathbb{R}^d
$$

$$
\implies \hat{\beta}^{LS} \stackrel{p}{\to} \mathbb{E}[Z_i Z_i']^{-1} \mathbb{E}[Y_i Z_i].
$$

One can show that $\beta^* = \mathbb{E}[Z_i Z_i']^{-1} \mathbb{E}[Y_i Z_i].$

We will later derive an approximate distribution for $\hat{\beta}^{LS}$. Claim 5.

$$
\hat{\beta}^{LS} \sim_{approx} \mathcal{N}(\beta^*, \Sigma/n).
$$

We will derive Σ in part 3 of the course.

 \Box

Compared to its behavior in the Gaussian linear model, the least-squares estimator in a misspecified model has larger total variance. Variance includes the original noise (ε) and the noise coming from misspecificiation (where the best linear predictor diverges from the conditional expectation of Y_i given Z_i). However, as the $1/n$ factor in the approximate variance suggests, $\hat{\beta}^{LS}$ remains root-n consistent.