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1 Outline

Agenda:
1. Statistical decision theory for prediction
2. PAC for finite function classes
Last time:
1. Minimax in Gaussian linear model
2. Least-squares with model misspecification
Next two weeks:

1. Optimal hypothesis testing

2. Information-theoretic minimax lower bounds

2 Statistical Decision Theory for Prediction

Data: (Z;,Y;)) € ZxY,i=1,...,n,iid. from Py € P, where P is the set of all distributions
over Z x Y.

Intuitive Goal: We want to find h : Z — ) that is good at predicting Y; from Z;. Our action
space is therefore A = {h;h € H} where H is a class of functions h : Z — ).

Definition: We define the single point loss [ : V) x Y — R>¢. We similarly define the loss:

L(h, Pp) = Bz, yo)~p, (1(1h(Z0), ¥0))

We can think of this as the average performance in a holdout set, or the average forecast perfor-
mance.



Examples: We may have 0-1 loss for classification problems, defined by I(9,y) = I(§ # y). We
may also have mean squared error I(7,y) = (§ — y)?.

Definition: We define a prediction procedure as a function A from our sample to our class of
functions #, that is A: (Z x V)" — H.

Definition: For a Py and a function class H, the optimal loss is:

L* = inf L(h, P
jnf (h, Py)

Formal Goal: Find A such that L(A(X), Pp) is close to L*

Definition: A procedure is (¢-6)-PAC (probably approximately correct) if:

sup P(L(A(X),Py) > L"+¢)<d
PyeP

We notice that the probability above depends crucially on P, H, and n. Visually, we have:
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Figure 1: (¢-0)-PAC visually

Definition: We say that a procedure A minimizes empirical risk if:

1 _
A(X) = argmin — Z I(h(Z;),Y;) =: argmin L(h, Py)
heH T heH

Example: Let H be the class of linear functions from R? to R. Let I(¢,) be the squared error
loss. Here, the A(X) that minimizes empirical risk is simply least-squares.

3 PAC for finite function classes

Let us consider a finite function class H = {hi, ho, ..., hx}, and loss I(7,y) € [0,1]. Our goal is to
provide finite-sample rates on € and ¢ for empirical risk minimization, which is (e-0)-PAC.
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Figure 2: Minimizing empirical risk with finite H
In the above figure, ho minimizes empirical loss. Now, let us provide the following proposition:
Proposition (Hoeffding’s Inequality): Let W; be i.i.d. supported on [0, 1]. We have:

(

LS Wi - B

> 5) < 2exp(—2¢?/n)
Proof: See here. B

Theorem (PAC for finite H): For empirical loss minimizing A and any € > 0, we have:

P(L(A(X), Py) > L* +¢) < 2K exp(—ne?/2)

Proof: We first notice that A selects h with L(h, Py) > L* + ¢ only if:

max

>e/2
heH /

%Zz(h(zi),m) — L(h, )
=1

Thus, first applying a union bound and Hoeffding’s inequality, we get:

>5/2>
>€/2>

P(L(A(X),P)) > L* +¢)

LS (2, %5) - L, By)
1

n

We can take the supremum over Py in P and the result follows. W


https://cs229.stanford.edu/extra-notes/hoeffding.pdf

Interpreting the Finite-Sample Bound: Finally, we can fix § (say at 1%) to find the corre-
sponding ¢, getting:

n

o \/Qlog(QK) + 2log(1/9)

We can notice that we are converging at rate 1/4/n. Moreover, our precision is decreasing in the
size of the function class K.

Parting Comments: These results can be extended to infinite function classes H. Moreover,
we can produce hardness bounds (as we did for minimax estimation) by imposing a prior over ©.
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