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1 Outline

Agenda:

1. Statistical decision theory for prediction

2. PAC for finite function classes

Last time:

1. Minimax in Gaussian linear model

2. Least-squares with model misspecification

Next two weeks:

1. Optimal hypothesis testing

2. Information-theoretic minimax lower bounds

2 Statistical Decision Theory for Prediction

Data: (Zi, Yi) ∈ Z × Y, i = 1, . . . , n, i.i.d. from Pθ ∈ P, where P is the set of all distributions
over Z × Y.

Intuitive Goal: We want to find h : Z → Y that is good at predicting Yi from Zi. Our action
space is therefore A = {h;h ∈ H} where H is a class of functions h : Z → Y.

Definition: We define the single point loss l : Y × Y → R≥0. We similarly define the loss:

L(h, Pθ) = E(Z0,Y0)∼Pθ
(l(h(Z0), Y0))

We can think of this as the average performance in a holdout set, or the average forecast perfor-
mance.
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Examples: We may have 0-1 loss for classification problems, defined by l(ŷ, y) = I(ŷ ̸= y). We
may also have mean squared error l(ŷ, y) = (ŷ − y)2.

Definition: We define a prediction procedure as a function A from our sample to our class of
functions H, that is A : (Z × Y)n → H.

Definition: For a Pθ and a function class H, the optimal loss is:

L∗ = inf
h∈H

L(h, Pθ)

Formal Goal: Find A such that L(A(X), Pθ) is close to L∗

Definition: A procedure is (ε-δ)-PAC (probably approximately correct) if:

sup
Pθ∈P

P (L(A(X), Pθ) > L∗ + ε) < δ

We notice that the probability above depends crucially on P, H, and n. Visually, we have:

Figure 1: (ε-δ)-PAC visually

Definition: We say that a procedure A minimizes empirical risk if:

A(X) = argmin
h∈H

1

n

n∑
i=1

l(h(Zi), Yi) =: argmin
h∈H

L̄(h, Pθ)

Example: Let H be the class of linear functions from Rd to R. Let l(ŷ, y) be the squared error
loss. Here, the A(X) that minimizes empirical risk is simply least-squares.

3 PAC for finite function classes

Let us consider a finite function class H = {h1, h2, . . . , hK}, and loss l(ŷ, y) ∈ [0, 1]. Our goal is to
provide finite-sample rates on ε and δ for empirical risk minimization, which is (ε-δ)-PAC.
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Figure 2: Minimizing empirical risk with finite H

In the above figure, h2 minimizes empirical loss. Now, let us provide the following proposition:

Proposition (Hoeffding’s Inequality): Let Wi be i.i.d. supported on [0, 1]. We have:

P

(∣∣∣∣ 1n∑Wi − E(Wi)

∣∣∣∣ > ε

)
≤ 2 exp(−2ε2/n)

Proof: See here. ■

Theorem (PAC for finite H): For empirical loss minimizing A and any ε > 0, we have:

P (L(A(X), Pθ) > L∗ + ε) ≤ 2K exp(−nε2/2)

Proof: We first notice that A selects h with L(h, Pθ) ≥ L∗ + ε only if:

max
h∈H

∣∣∣∣∣ 1n
n∑

i=1

l(h(Zi), Yi)− L(h, Pθ)

∣∣∣∣∣ > ε/2

Thus, first applying a union bound and Hoeffding’s inequality, we get:

P (L(A(X), Pθ) > L∗ + ε)

≤ P

(
max
h∈H

∣∣∣∣∣ 1n
n∑

i=1

l(h(Zi), Yi)− L(h, Pθ)

∣∣∣∣∣ > ε/2

)

≤
K∑
k=1

P

(∣∣∣∣∣ 1n
n∑

i=1

l(hk(Zi), Yi)− L(hk, Pθ)

∣∣∣∣∣ > ε/2

)
≤ 2K exp(−nε2/2)

We can take the supremum over Pθ in P and the result follows. ■
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Interpreting the Finite-Sample Bound: Finally, we can fix δ (say at 1%) to find the corre-
sponding ε, getting:

ε =

√
2 log(2K) + 2 log(1/δ)

n

We can notice that we are converging at rate 1/
√
n. Moreover, our precision is decreasing in the

size of the function class K.

Parting Comments: These results can be extended to infinite function classes H. Moreover,
we can produce hardness bounds (as we did for minimax estimation) by imposing a prior over Θ.
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