### 6.S951 Modern Mathematical Statistics

Fall 2024

Lecture 5 — September 19, 2024

Prof. Stephen Bates

Scribe: Andreas Petrou-Zeniou

# 1 Outline

### Agenda:

- 1. Statistical decision theory for prediction
- 2. PAC for finite function classes

### Last time:

- 1. Minimax in Gaussian linear model
- 2. Least-squares with model misspecification

#### Next two weeks:

- 1. Optimal hypothesis testing
- 2. Information-theoretic minimax lower bounds

## 2 Statistical Decision Theory for Prediction

**Data:**  $(Z_i, Y_i) \in \mathcal{Z} \times \mathcal{Y}, i = 1, ..., n$ , i.i.d. from  $P_{\theta} \in \mathcal{P}$ , where  $\mathcal{P}$  is the set of all distributions over  $\mathcal{Z} \times \mathcal{Y}$ .

**Intuitive Goal:** We want to find  $h : \mathbb{Z} \to \mathcal{Y}$  that is good at predicting  $Y_i$  from  $Z_i$ . Our action space is therefore  $\mathcal{A} = \{h; h \in \mathcal{H}\}$  where  $\mathcal{H}$  is a class of functions  $h : \mathbb{Z} \to \mathcal{Y}$ .

**Definition:** We define the single point loss  $l : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_{\geq 0}$ . We similarly define the loss:

$$L(h, P_{\theta}) = \mathbb{E}_{(Z_0, Y_0) \sim P_{\theta}} \left( l(h(Z_0), Y_0) \right)$$

We can think of this as the average performance in a holdout set, or the average forecast performance.

**Examples:** We may have 0-1 loss for classification problems, defined by  $l(\hat{y}, y) = \mathbb{I}(\hat{y} \neq y)$ . We may also have mean squared error  $l(\hat{y}, y) = (\hat{y} - y)^2$ .

**Definition:** We define a prediction procedure as a function A from our sample to our class of functions  $\mathcal{H}$ , that is  $A : (\mathcal{Z} \times \mathcal{Y})^n \to \mathcal{H}$ .

**Definition:** For a  $P_{\theta}$  and a function class  $\mathcal{H}$ , the optimal loss is:

$$L^* = \inf_{h \in \mathcal{H}} L(h, P_{\theta})$$

**Formal Goal:** Find A such that  $L(A(X), P_{\theta})$  is close to  $L^*$ 

**Definition:** A procedure is  $(\varepsilon - \delta)$ -PAC (probably approximately correct) if:

$$\sup_{P_{\theta} \in \mathcal{P}} P\left(L(A(X), P_{\theta}) > L^* + \varepsilon\right) < \delta$$

We notice that the probability above depends crucially on  $\mathcal{P}$ ,  $\mathcal{H}$ , and n. Visually, we have:



Figure 1:  $(\varepsilon - \delta)$ -PAC visually

**Definition:** We say that a procedure A minimizes empirical risk if:

$$A(X) = \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} l(h(Z_i), Y_i) =: \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} \bar{L}(h, P_{\theta})$$

**Example:** Let  $\mathcal{H}$  be the class of linear functions from  $\mathbb{R}^d$  to  $\mathbb{R}$ . Let  $l(\hat{y}, y)$  be the squared error loss. Here, the A(X) that minimizes empirical risk is simply least-squares.

### **3** PAC for finite function classes

Let us consider a finite function class  $\mathcal{H} = \{h_1, h_2, \dots, h_K\}$ , and loss  $l(\hat{y}, y) \in [0, 1]$ . Our goal is to provide finite-sample rates on  $\varepsilon$  and  $\delta$  for empirical risk minimization, which is  $(\varepsilon - \delta)$ -PAC.



Figure 2: Minimizing empirical risk with finite  $\mathcal{H}$ 

In the above figure,  $h_2$  minimizes empirical loss. Now, let us provide the following proposition:

**Proposition (Hoeffding's Inequality):** Let  $W_i$  be i.i.d. supported on [0, 1]. We have:

$$P\left(\left|\frac{1}{n}\sum W_i - \mathbb{E}(W_i)\right| > \varepsilon\right) \le 2\exp(-2\varepsilon^2/n)$$

**Proof:** See here.

**Theorem (PAC for finite**  $\mathcal{H}$ ): For empirical loss minimizing A and any  $\varepsilon > 0$ , we have:  $P(L(A(X), P_{\theta}) > L^* + \varepsilon) \le 2K \exp(-n\varepsilon^2/2)$ 

**Proof:** We first notice that A selects h with  $L(h, P_{\theta}) \ge L^* + \varepsilon$  only if:

$$\max_{h \in \mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^{n} l(h(Z_i), Y_i) - L(h, P_{\theta}) \right| > \varepsilon/2$$

Thus, first applying a union bound and Hoeffding's inequality, we get:

$$P(L(A(X), P_{\theta}) > L^{*} + \varepsilon)$$

$$\leq P\left(\max_{h \in \mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^{n} l(h(Z_{i}), Y_{i}) - L(h, P_{\theta}) \right| > \varepsilon/2 \right)$$

$$\leq \sum_{k=1}^{K} P\left( \left| \frac{1}{n} \sum_{i=1}^{n} l(h_{k}(Z_{i}), Y_{i}) - L(h_{k}, P_{\theta}) \right| > \varepsilon/2 \right)$$

$$\leq 2K \exp(-n\varepsilon^{2}/2)$$

We can take the supremum over  $P_{\theta}$  in  $\mathcal{P}$  and the result follows.

Interpreting the Finite-Sample Bound: Finally, we can fix  $\delta$  (say at 1%) to find the corresponding  $\varepsilon$ , getting:

$$\varepsilon = \sqrt{\frac{2\log(2K) + 2\log(1/\delta)}{n}}$$

We can notice that we are converging at rate  $1/\sqrt{n}$ . Moreover, our precision is decreasing in the size of the function class K.

**Parting Comments:** These results can be extended to infinite function classes  $\mathcal{H}$ . Moreover, we can produce hardness bounds (as we did for minimax estimation) by imposing a prior over  $\Theta$ .