6.S951 Modern Mathematical Statistics Fall 2024

Lecture 5 — September 19, 2024

Prof. Stephen Bates

Scribe: Andreas Petrou-Zeniou

1 Outline

Agenda:

- 1. Statistical decision theory for prediction
- 2. PAC for finite function classes

Last time:

- 1. Minimax in Gaussian linear model
- 2. Least-squares with model misspecification

Next two weeks:

- 1. Optimal hypothesis testing
- 2. Information-theoretic minimax lower bounds

2 Statistical Decision Theory for Prediction

Data: $(Z_i, Y_i) \in \mathcal{Z} \times \mathcal{Y}, i = 1, \ldots, n$, i.i.d. from $P_{\theta} \in \mathcal{P}$, where \mathcal{P} is the set of all distributions over $\mathcal{Z} \times \mathcal{Y}$.

Intuitive Goal: We want to find $h : \mathcal{Z} \to \mathcal{Y}$ that is good at predicting Y_i from Z_i . Our action space is therefore $\mathcal{A} = \{h; h \in \mathcal{H}\}\$ where \mathcal{H} is a class of functions $h : \mathcal{Z} \to \mathcal{Y}$.

Definition: We define the single point loss $l : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_{\geq 0}$. We similarly define the loss:

$$
L(h, P_{\theta}) = \mathbb{E}_{(Z_0, Y_0) \sim P_{\theta}} \left(l(h(Z_0), Y_0) \right)
$$

We can think of this as the average performance in a holdout set, or the average forecast performance.

Examples: We may have 0-1 loss for classification problems, defined by $l(\hat{y}, y) = \mathbb{I}(\hat{y} \neq y)$. We may also have mean squared error $l(\hat{y}, y) = (\hat{y} - y)^2$.

Definition: We define a prediction procedure as a function A from our sample to our class of functions H, that is $A: (Z \times Y)^n \to H$.

Definition: For a P_{θ} and a function class H , the optimal loss is:

$$
L^* = \inf_{h \in \mathcal{H}} L(h, P_{\theta})
$$

Formal Goal: Find A such that $L(A(X), P_{\theta})$ is close to L^*

Definition: A procedure is $(\varepsilon-\delta)$ -PAC (probably approximately correct) if:

$$
\sup_{P_{\theta} \in \mathcal{P}} P\left(L(A(X), P_{\theta}) > L^* + \varepsilon\right) < \delta
$$

We notice that the probability above depends crucially on P , H , and n. Visually, we have:

Figure 1: $(\varepsilon-\delta)$ -PAC visually

Definition: We say that a procedure A minimizes empirical risk if:

$$
A(X) = \underset{h \in \mathcal{H}}{\arg \min} \frac{1}{n} \sum_{i=1}^{n} l(h(Z_i), Y_i) =: \underset{h \in \mathcal{H}}{\arg \min} \overline{L}(h, P_{\theta})
$$

Example: Let H be the class of linear functions from \mathbb{R}^d to R. Let $l(\hat{y}, y)$ be the squared error loss. Here, the $A(X)$ that minimizes empirical risk is simply least-squares.

3 PAC for finite function classes

Let us consider a finite function class $\mathcal{H} = \{h_1, h_2, \ldots, h_K\}$, and loss $l(\hat{y}, y) \in [0, 1]$. Our goal is to provide finite-sample rates on ε and δ for empirical risk minimization, which is $(\varepsilon-\delta)$ -PAC.

Figure 2: Minimizing empirical risk with finite H

In the above figure, h_2 minimizes empirical loss. Now, let us provide the following proposition:

Proposition (Hoeffding's Inequality): Let W_i be i.i.d. supported on [0, 1]. We have:

$$
P\left(\left|\frac{1}{n}\sum W_i - \mathbb{E}(W_i)\right| > \varepsilon\right) \le 2\exp(-2\varepsilon^2/n)
$$

Proof: See [here.](https://cs229.stanford.edu/extra-notes/hoeffding.pdf) ■

Theorem (PAC for finite H): For empirical loss minimizing A and any $\varepsilon > 0$, we have: $P(L(A(X), P_{\theta}) > L^* + \varepsilon) \leq 2K \exp(-n\varepsilon^2/2)$

Proof: We first notice that A selects h with $L(h, P_{\theta}) \geq L^* + \varepsilon$ only if:

$$
\max_{h \in \mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^n l(h(Z_i), Y_i) - L(h, P_{\theta}) \right| > \varepsilon/2
$$

Thus, first applying a union bound and Hoeffding's inequality, we get:

$$
P(L(A(X), P_{\theta}) > L^* + \varepsilon)
$$

\n
$$
\leq P\left(\max_{h \in \mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^n l(h(Z_i), Y_i) - L(h, P_{\theta}) \right| > \varepsilon/2 \right)
$$

\n
$$
\leq \sum_{k=1}^K P\left(\left| \frac{1}{n} \sum_{i=1}^n l(h_k(Z_i), Y_i) - L(h_k, P_{\theta}) \right| > \varepsilon/2 \right)
$$

\n
$$
\leq 2K \exp(-n\varepsilon^2/2)
$$

We can take the supremum over P_θ in $\mathcal P$ and the result follows. \blacksquare

Interpreting the Finite-Sample Bound: Finally, we can fix δ (say at 1%) to find the corresponding ε , getting:

$$
\varepsilon = \sqrt{\frac{2\log(2K) + 2\log(1/\delta)}{n}}
$$

We can notice that we are converging at rate $1/\sqrt{n}$. Moreover, our precision is decreasing in the size of the function class $K.$

Parting Comments: These results can be extended to infinite function classes H . Moreover, we can produce hardness bounds (as we did for minimax estimation) by imposing a prior over Θ.