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1 Outline

So far:

1. Statistical decision theory (notions of optimality).

2. Least-squares in the Gaussian Linear Model.

3. High probability results for prediction tasks.

Agenda:

1. Hypothesis testing basics.

2. Optimal simple-simple tests (Neyman-Pearson).

3. Total variation distance.

Recap - Taxonomy of tasks:

1. Estimation: Find a property of the underlying distribution - Action space: Rd.

2. Prediction: Find a function that can predict well over unseen data coming from the under-
lying distribution - Action space: H, some space of functions.

3. Hypothesis testing: Distinguish over two possible sets of distributions. - Action space:
{0, 1}, binary choice.

2 Hypothesis testing basics

Setup:

• Space of distributions (parametrized by θ ∈ Θ): Θ = Θ0︸︷︷︸
Null

∪ Θ1︸︷︷︸
Alternative

, s.t. Θ0 ∩Θ1 = ∅.

• Action Space: A = {0, 1}, where 0 corresponds to choosing the null, and 1 to choosing the
alternative.
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• Loss function: For some numbers cFP, cFN > 0 :

L(a, θ) =


0 if a = 0 and θ ∈ Θ0,

cFP if a = 1 and θ ∈ Θ0,

0 if a = 1 and θ ∈ Θ1,

cFN if a = 0 and θ ∈ Θ1.

Why study testing?

1) Fundamental theoretical problem: How well can we distinguish from different distributions
possibly generating the data?

2) Applied importance: Is there evidence of a given structure beyond noise?

3) Provides general insights for binary statistical decision-making.

3 Optimal simple vs. simple hypothesis tests

Setup:

• We want to distinguish between two distributions, namely Θ0 = {θ0} and Θ1 = {θ1}.

• We observe data X ∼ Pθ.

• We want to design optimal procedures A : X → {0, 1} to select from these distributions.

Example:

Suppose Pθ0 = N (0, 1) and Pθ1 = N (3, 1), and we observe a single data point X. The rule

A(X) =

{
1 if X > 3/2,

0 otherwise.

seems like a sensible procedure to determine the most probable underlying distribution (see figure
below).
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Naturally, any hypothesis testing procedure will not always be correct. Therefore, we usually
distinguish between the types of mistakes, and the probabilities thereof, that we can incur by
implementing a particular decision rule:

• Type I error - False Positive: Pθ0(A(X) = 1)

• Type II error - False Negative: Pθ1(A(X) = 0)

Since hypothesis testing falls within the general statistical decision theory framework studied in
class, we can use the notions of optimality we have introduced in previous lectures. In particular,
we can study Bayes optimal hypothesis testing rules:

Let Q be a prior over Θ. Since Θ consists only of two points, let Q(θ0) = π0 ∈ (0, 1) and
Q(θ1) = π1 = 1− π0. Then the Bayes risk of an arbitrary procedure A : X → {0, 1} under Q is

RB(A(·), Q) = Eθ∼Q[EX∼Pθ
[L(A(X), θ) | θ]]

= π0Pθ0(A(X) = 1)cFP + π1Pθ1(A(X) = 0)cFN

Note: Observe that the Bayes risk is a linear combination of the probabilities of committing the
various errors.

In particular, if π0 = π1 = 1/2, and cFN = cFP = 1, this reduces to

RB(A(·), Q) =
1

2
(Pθ0(A(X) = 1) + Pθ1(A(X) = 0))

Theorem 1 (Bayes-optimal test). Suppose Pθ0 has density f0 and Pθ1 has density f1. Then the
Bayes-optimal test is
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A(x) =

1 if
f1(x)

f0(x)
>

π0cFP
π1cFN

,

0 otherwise.

Proof. To find the Bayes-optimal procedure we calculate the posterior distribution and choose the
action that minimizes the expected loss. By the Bayes rule, we have that

P(θ = θ0|X = x) =
P(x|θ = θ0)P(θ = θ0)

P(x|θ = θ0)P(θ = θ0) + P(x|θ = θ1)P(θ = θ1)
=

π0f0(x)

π0f0(x) + π1f1(x)

Likewise,

P(θ = θ1|X = x) =
P(x|θ = θ1)P(θ = θ1)

P(x|θ = θ0)P(θ = θ0) + P(x|θ = θ1)P(θ = θ1)
=

π1f1(x)

π0f0(x) + π1f1(x)

Next, we note that

• Expected loss of choosing a(x) = 0:

π1f1(x)

π0f0(x) + π1f1(x)
cFN

• Expected loss of choosing a(x) = 1:

π0f0(x)

π0f0(x) + π1f1(x)
cFP

whence it is optimal to choose a(x) = 1 whenever

π0f0(x)

π0f0(x) + π1f1(x)
cFP <

π1f1(x)

π0f0(x) + π1f1(x)
cFN ←→

f1(x)

f0(x)
>

π0cFP
π1cFN

Note: The function f1(x)
f0(x)

is known as the likelihood ratio.

Example (continued):

Suppose Pθ0 = N (0, 1) and Pθ1 = N (3, 1). Thus, the likelihood ratio takes the form:

f1(x)

f0(x)
=

(2π)−1/2 exp

(
−1

2
(x− 3)2

)
(2π)−1/2 exp

(
−1

2
x2

) = exp

(
−1

2
(9− 6x)

)

Since the likelihood ratio is increasing in x, it suggests that the Bayes optimal decision procedure
follows a thresholding rule:
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A(x) =

{
1 if x > τ,

0 otherwise.

In the case π0 = π1 = 1/2, and cFN = cFP = 1, then τ = 3/2.

Alternative Hypothesis Testing Setup: Often, hypothesis testing occurs within a different
framework than the one just stated. In many cases, we would like to design a procedure that
guarantees that the type I error is less than some level α ∈ (0, 1). In these settings, we usually fix
Θ0, the null, as a no effect or status quo world, while Θ1, the alternative, contains some interest
effect or structure we want to establish. Thus, the idea is that the burden of proof is on us to
establish if it is really the case that θ ∈ Θ1.

Definition (Neyman-Pearson Optimality): An statistical test A∗(·) satisfies the Neyman-
Pearson Optimality if it is a solution to the problem

sup
A

Pθ1(A(X) = 1))︸ ︷︷ ︸
Power =1−Prob. of Type II error

s.t. Pθ0(A(X) = 1)︸ ︷︷ ︸
Prob. of Type I error

≤ α (1)

Theorem 2 (The Neyman-Pearson Lemma). Suppose Pθ0 has density f0 and Pθ1 has density f1.
Then a solution ANP : X → {0, 1} to (1) is

ANP(x) =

1 if
f1(x)

f0(x)
> λ,

0 otherwise.

where λ satisfies

Pθ0

(
f1(x)

f0(x)
> λ

)
= α

Note: The Neyman-Pearson solution resembles the Bayes-optimal test for some combination of
π1, π0, cFP, cNP, which are implicitly determined by the choice of f1, f0, and α.

Example (continued):

Suppose Pθ0 = N (0, 1) and Pθ1 = N (3, 1), and let α = 0.05. The Neyman-Pearson optimal
procedure is given by

ANP(x) =

1 if x > λ = exp

(
3z0.95 −

9

2

)
,

0 otherwise.

where z0.95 is such that the excess mass to the right of this point in the normal standard pdf is
exactly α = 0.95.1

1This λ is the 95th percentile of the random variable f1(X)
f0(X)

when X ∼ N (0, 1).
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4 Total Variation Distance

Definition: The total variation distance between two distributions Pθ0 and Pθ1 over some common
space X is

||Pθ0 − Pθ1 ||TV = sup
B⊆X

|Pθ1(X ∈ B)− Pθ0(X ∈ B)| (2)

Lemma 3. If Pθ0 has density f0 and Pθ1 has density f1, the set BOpt that optimizes (2) is

BOpt = {x : f1(x) > f0(x)}

Proof. Consider some alternative set B ⊆ X, with B ̸= BOpt. Without loss of generality, assume
that Pθ1(B) > Pθ0(B) (else take the complements). Then,

Pθ1(B
Opt)− Pθ0(B

Opt)− (Pθ1(B)− Pθ0(B)) =

∫
BOpt

f1(x)dx−
∫
BOpt

f0(x)dx−
(∫

B
f1(x)dx−

∫
B
f0(x)dx

)
=

∫
BOpt\B

(f1(x)− f0(x))dx︸ ︷︷ ︸
>0

−
∫
B\BOpt

(f1(x)− f0(x))dx︸ ︷︷ ︸
<0

> 0

Theorem 4 (Testing hardness bound by the TV distance). To be completed in next lecture

inf
A:X→{0,1}

Pθ0(A(X) = 1) + Pθ1(A(X) = 0) = 1− ||Pθ0 − Pθ1 ||TV
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