
6.S951 Modern Mathematical Statistics Fall 2024

Lecture 7 — September 26, 2024

Prof. Stephen Bates

Scribe: Otavio Tecchio

1 Outline

So far:

1. Statistical decision theory (notions of optimality).

2. Estimation, prediction, and testing (with examples).

Agenda:

1. Total Variation Distance.

2. Composite hypothesis testing.

3. First steps on minimax bounds and information theory.

2 Total Variation (TV) Distance

Consider two probability distributions P0 and P1 over a common sample space X . The definition
of TV distance is as follows.

Definition 1. The TV distance between P0 and P1, denoted by ∥P0 − P1∥TV , is given by

∥P0 − P1∥TV = sup
B⊆X

|P0(B)− P1(B)| .

The following lemma, stated and proved in Lecture 6, relates the TV distance to the likelihood
ratio.

Lemma 1. Assume that P0 and P1 admit density functions denoted by f0 and f1 respectively. The
set Bopt ⊆ X that maximizes |P0(B)− P1(B)| is given by

Bopt = {x : f1(x) > f0(x)}.

Note: equivalently, we could consider the complement of Bopt.

From the above lemma, we get the following corollary.
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Corollary 1. Assume that P0 and P1 admit density functions denoted by f0 and f1 respectively,
then

∥P0 − P1∥TV =

∫
Bopt

f1(x)− f0(x)dx.

The following theorem motivates/justifies the introduction of TV distance in the context of simple-
simple hypothesis testing. It shows that the TV distance encodes the difficulty of simple-simple
hypothesis testing.

Theorem 1 (TV distance to testing link). Consider a simple-simple hypothesis test with Θ0 = {θ0}
and Θ1 = {θ1}, then

inf
A:X→{0,1}

Pθ0 (A(X) = 1) + Pθ1 (A(X) = 0) = 1− ∥Pθ0 − Pθ1∥TV .

A proof of this theorem for the case where both Pθ0 and Pθ1 admit density functions is given below.

Note: see Theorem 15.1.1 in Lehman and Romano (4th edition) for a version of this result that
allows for randomized tests.

Example 1 (Uniform Location Models). Consider P0 = uniform[−1, 1] and P1 = uniform[0, 2],
illustrated in the figure below.

2



Let A be a decision rule given by

A(x) =

{
1 if x > 1

0 otherwise
.

Note that ∥P0 − P1∥TV = P1([1, 2])− P0([1, 2]) = 1/2 since Bopt = [1, 2] in this case. Moreover,

P0 (A(X) = 1) + P1 (A(X) = 0) =P0 (X > 1) + P1 (X ≤ 1)

=0 +
1

2
= 1− ∥P0 − P1∥TV .

Thus, A hits the lower bound and is optimal in the sense that minimizes the sum of the probabilities
of Type I and Type II errors. Also, A is Bayes optimal for a specific prior and loss function (see
the proof of Theorem 1).

Note: we could have chosen the cutoff value to be any number between 0 and 1 and the associated
decision rule would still be optimal in the sense of minimizing the sum of the probabilities of Type
I and Type II errors.

Example 2 (Discrete Distribution). Consider the following discrete distribution.

Note that Bopt = {0} so ∥P0 − P1∥TV = P1({0}) − P0({0}) = 20%. Consider a decision rule A
given by

A(x) =


1 if x = 0

1 if x = 1

0 otherwise

.

In this case, P0(A(X) = 1) = P0(X = 0 or X = 1) = 70% and P1(A(X) = 0) = P1(X = 2) = 10%.
Therefore,

P0(A(X) = 1) + P1(A(X) = 0) = 80% = 1− ∥P0 − P1∥TV .
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Once again, the decision rule A hits the bound.

Note: similar to the previous example, it does not matter what decision we make when x = 1 in
the sense that if A(1) = 0 (or even if we randomized at x = 1), the sum of Type I and Type II
errors probabilities would be the same.

Example 3 (Gaussian Distributions). Let P0 = N (0, 1) and P1 = N (θ, 1) for some given θ > 0.

In this case, Bopt = (θ/2,∞) and

∥P0 − P1∥TV = P1

((
θ

2
,∞

))
− P0

((
θ

2
,∞

))
= 1− Φ

(
θ − θ

2

)
−
(
1− Φ

(
θ

2

))
= Φ

(
θ

2

)
− Φ

(
−θ

2

)
,

where Φ is the cdf of the standard normal.

A few numerical examples:

• If θ = 5, ∥P0 − P1∥TV ≈ 0.99.

• If θ = 3, ∥P0 − P1∥TV ≈ 0.87.

• If θ = 1, ∥P0 − P1∥TV ≈ 0.38.

• If θ = 0.1, ∥P0 − P1∥TV ≈ 0.04.

Proof of Theorem 1: Let f0, f1 be the density functions of Pθ0 and Pθ1 respectively.

Consider the notation introduced in Lecture 6 and set π0 = 0.5 and cFP = cFN = 1. In Lecture 6,
we showed that the optimal Bayes test ABayes in this setting is characterized by

ABayes(x) =

{
1 if f1(x) > f0(x)

0 otherwise
.
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Moreover, recall that for any A : X → {0, 1},

RB(A, π0 = 0.5) =
1

2
[Pθ0 (A(X) = 1) + Pθ1 (A(X) = 0)] .

In particular,

RB(A
Bayes, π0 = 0.5) =

1

2

[
Pθ0 (f1(X) > f0(X)) + Pθ1 (f1(X) ≤ f0(X))

]
=

1

2

[
Pθ0 (f1(X) > f0(X)) + 1− Pθ1 (f1(X) > f0(X))

]
=

1

2

[
1− ∥P0 − P1∥TV

]
since Bopt = {x : f1(x) > f0(x)} from Lemma 1. The result follows from the Bayes optimality of
ABayes.

□

The next lemma gives a coupling/optimal transport interpretation for the TV distance.

Lemma 2. If there exists γ ∈ [0, 1] such that ∥P0−P1∥TV = γ, then there exists a joint distribution
for (X0, X1) ∈ X × X with P (X0 = X1) = 1− γ and X0 ∼ P0 and X1 ∼ P1 marginally.

Note: we also have that 1 − γ is the maximum possible value for P (X0 = X1) for X0 and X1

satisfying the conditions in the lemma.

The idea is that we can flip a coin that returns Heads with probability 1−γ and returns Tails with
probability γ. The distributions P0 and P1 are indistinguishable when the coin returns Heads, and
the distributions P0 and P1 are different when the coin returns Tails.

Example 4 (Example 2 continued). We had that ∥P0−P1∥TV = 20% and so we want to construct
a joint distribution such that P (X0 = X1) = 80%. Consider the following joint distribution:

P (X0 = x0, X1 = x1) =



0.6 if (x0, x1) = (1, 1)

0.1 if (x0, x1) = (0, 0)

0.1 if (x0, x1) = (2, 2)

0.2 if (x0, x1) = (2, 0)

0 if (x0, x1) = (0, 2)

.

Clearly, P (X0 = X1) = 80%. Also, P (X0 = 0) = 0.1, P (X0 = 1) = 0.6, P (X0 = 2) = 0.3 so that
X0 ∼ P0 and P (X1 = 0) = 0.3, P (X1 = 1) = 0.6, P (X1 = 2) = 0.1 so that X1 ∼ P1.

3 Composite Hypothesis Tests

Up to now, we have considered simple-simple hypothesis tests and derived that the optimal test
is based on a threshold for the likelihood ratio. Now, we consider hypotheses where Θ0 and Θ1

are not singletons and tests A : X → [0, 1]. Note that we are now allowing for randomized tests,
which can be interpreted as a non-randomized test A′ : X → {0, 1} defined by A′(X) = 1{U≤A(X)},
where U is distributed as a uniform between 0 and 1 and is independent of X. Thus, A(x) is the
probability of rejecting the null given that we observed x ∈ X .
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3.1 Uniformly Most Powerful Tests

Definition 2 (UMP). A test AUMP
α : X → [0, 1] is the uniformly most powerful test of size α if for

all θ1 ∈ Θ1,
Eθ1 [A

UMP
α (X)] = sup

A∈A
Eθ1 [A(X)],

where A = {A : X → [0, 1] such that supθ0∈Θ0
Eθ0 [A(X)] ≤ α}.

Example 5. Consider a Gaussian distribution with mean θ ∈ R and unit variance and the hypoth-
esis Θ0 = (−∞, 0], Θ1 = (0,∞).

Claim 1. The uniformly most powerful test of size α in this case is given by

AUMP
α (x) =

{
1 if x > Φ−1(1− α)

0 otherwise
.

Proof. Consider a simple-simple hypothesis with Θ0 = {0} and Θ1 = {θ1}, θ1 > 0. From the
Neyman-Pearson Lemma, the optimal test for this simple-simple hypothesis is

ANP(x) =

{
1 if f1(x)

f0(x)
> λ

0 otherwise
,

where f0 is the pdf of the standard normal, f1 is the pdf of N (θ1, 1) and λ satisfies

P0

(
f1(X)

f0(X)
> λ

)
= α.

Here,
f1(x)

f0(x)
= exp

(
θ1x− θ21

2

)
,

which is strictly increasing in x, so an above-the-cutoff rule based on the likelihood ratio is equivalent
to an above-the-cutoff rule based on x. Moreover, from the equation that implicitly defines λ, the
Neyman-Pearson test binds the constraint. Thus, we can rewrite it as

ANP(x) =

{
1 if x > Φ−1(1− α)

0 otherwise
,

which equals AUMP
α .

Thus, because AUMP
α satisfies the Type I Error constraint for θ0 = 0 and because

Eθ0 [A
UMP
α (X)] = Pθ0(X > Φ−1(1− α)) = 1− Φ(Φ−1(1− α)− θ0)

≤ 1− Φ(Φ−1(1− α))

= P0(X > Φ−1(1− α)) = E0[A
UMP
α (X)]

for any θ0 ∈ (−∞, 0], AUMP
α satisfies the Type I Error constraint for all θ0 ∈ (−∞, 0]. Therefore,

because AUMP
α is optimal when θ0 = 0, satisfies the Type I Error constraint, and does not depend

on θ1, it is the UMP of size α.
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A key step in the proof above is the monotonicity of the likelihood ratio. We can extend the
existence of a UMP for a more general class of statistical models with that property. Consider the
following class.

Definition 3. A statistical model P = {Pθ : θ ∈ Θ ⊆ R} has monotone likelihood ratio if there
exists a function T : R → R such that for all θ0 < θ1, Pθ0 and Pθ1 are distinct and fθ1(x)/fθ0(x) =
g1(T (x))/g0(T (x)) for some functions g0, g1 with g1/g0 nondecreasing.

The following theorem characterizes the UMP in the class of models defined above for the hypothesis
Θ0 = (−∞, 0], Θ1 = (0,∞).

Theorem 2 (UMP with Monotone Likelihood Ratio). Suppose the statistical model has monotone
likelihood ratio, then there is a UMP for the hypothesis Θ0 = (−∞, 0], Θ1 = (0,∞) which is given
by

AUMP(x) =


1 if T (x) > c

γ if T (x) = c

0 if T (x) < c

,

where γ ∈ [0, 1] and c and γ are uniquely determined by the Type I Error constraint.

Section 3.4 of Lehman and Romano (4th edition) gives many examples of distributions satisfying
the monotone likelihood ratio property.
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