6.S951 Modern Mathematical Statistics Fall 2024

Lecture 7 — September 26, 2024

Prof. Stephen Bates

Scribe: Otavio Tecchio

1 Outline

So far:

- 1. Statistical decision theory (notions of optimality).
- 2. Estimation, prediction, and testing (with examples).

Agenda:

- 1. Total Variation Distance.
- 2. Composite hypothesis testing.
- 3. First steps on minimax bounds and information theory.

2 Total Variation (TV) Distance

Consider two probability distributions P_0 and P_1 over a common sample space X. The definition of TV distance is as follows.

Definition 1. The TV distance between P_0 and P_1 , denoted by $||P_0 - P_1||_{TV}$, is given by

$$
||P_0 - P_1||_{TV} = \sup_{B \subseteq \mathcal{X}} |P_0(B) - P_1(B)|.
$$

The following lemma, stated and proved in Lecture 6, relates the TV distance to the likelihood ratio.

Lemma 1. Assume that P_0 and P_1 admit density functions denoted by f_0 and f_1 respectively. The set $B^{opt} \subseteq \mathcal{X}$ that maximizes $|P_0(B) - P_1(B)|$ is given by

$$
B^{opt} = \{x : f_1(x) > f_0(x)\}.
$$

Note: equivalently, we could consider the complement of B^{opt} .

From the above lemma, we get the following corollary.

Corollary 1. Assume that P_0 and P_1 admit density functions denoted by f_0 and f_1 respectively, then $||P_0 - P_1||_{TV} =$

Bopt

 $f_1(x) - f_0(x)dx$.

The following theorem motivates/justifies the introduction of TV distance in the context of simplesimple hypothesis testing. It shows that the TV distance encodes the difficulty of simple-simple hypothesis testing.

Theorem 1 (TV distance to testing link). Consider a simple-simple hypothesis test with $\Theta_0 = {\theta_0}$ and $\Theta_1 = {\theta_1}$, then

$$
\inf_{A:\mathcal{X}\to\{0,1\}} P_{\theta_0}\left(A(X)=1\right) + P_{\theta_1}\left(A(X)=0\right) = 1 - \|P_{\theta_0} - P_{\theta_1}\|_{TV}.
$$

A proof of this theorem for the case where both P_{θ_0} and P_{θ_1} admit density functions is given below.

Note: see Theorem 15.1.1 in Lehman and Romano (4th edition) for a version of this result that allows for randomized tests.

Example 1 (Uniform Location Models). Consider $P_0 = uniform[-1, 1]$ and $P_1 = uniform[0, 2]$, illustrated in the figure below.

Let A be a decision rule given by

$$
A(x) = \begin{cases} 1 & \text{if } x > 1 \\ 0 & \text{otherwise} \end{cases}.
$$

Note that $||P_0 - P_1||_{TV} = P_1([1, 2]) - P_0([1, 2]) = 1/2$ since $B^{opt} = [1, 2]$ in this case. Moreover,

$$
P_0(A(X) = 1) + P_1(A(X) = 0) = P_0(X > 1) + P_1(X \le 1)
$$

= 0 + $\frac{1}{2}$ = 1 - ||P₀ - P₁||_{TV}.

Thus, A hits the lower bound and is optimal in the sense that minimizes the sum of the probabilities of Type I and Type II errors. Also, A is Bayes optimal for a specific prior and loss function (see the proof of Theorem 1).

Note: we could have chosen the cutoff value to be any number between 0 and 1 and the associated decision rule would still be optimal in the sense of minimizing the sum of the probabilities of Type I and Type II errors.

Example 2 (Discrete Distribution). Consider the following discrete distribution.

Note that $B^{opt} = \{0\}$ so $||P_0 - P_1||_{TV} = P_1(\{0\}) - P_0(\{0\}) = 20\%$. Consider a decision rule A given by

$$
A(x) = \begin{cases} 1 & \text{if } x = 0 \\ 1 & \text{if } x = 1 \\ 0 & \text{otherwise} \end{cases}.
$$

In this case, $P_0(A(X) = 1) = P_0(X = 0 \text{ or } X = 1) = 70\%$ and $P_1(A(X) = 0) = P_1(X = 2) = 10\%$. Therefore,

$$
P_0(A(X) = 1) + P_1(A(X) = 0) = 80\% = 1 - ||P_0 - P_1||_{TV}.
$$

Once again, the decision rule A hits the bound.

Note: similar to the previous example, it does not matter what decision we make when $x = 1$ in the sense that if $A(1) = 0$ (or even if we randomized at $x = 1$), the sum of Type I and Type II errors probabilities would be the same.

Example 3 (Gaussian Distributions). Let $P_0 = \mathcal{N}(0, 1)$ and $P_1 = \mathcal{N}(\theta, 1)$ for some given $\theta > 0$.

In this case, $B^{opt} = (\theta/2, \infty)$ and

$$
||P_0 - P_1||_{TV} = P_1\left(\left(\frac{\theta}{2}, \infty\right)\right) - P_0\left(\left(\frac{\theta}{2}, \infty\right)\right)
$$

$$
= 1 - \Phi\left(\theta - \frac{\theta}{2}\right) - \left(1 - \Phi\left(\frac{\theta}{2}\right)\right)
$$

$$
= \Phi\left(\frac{\theta}{2}\right) - \Phi\left(-\frac{\theta}{2}\right),
$$

where Φ is the cdf of the standard normal.

A few numerical examples:

- If $\theta = 5$, $||P_0 P_1||_{TV} \approx 0.99$.
- If $\theta = 3$, $||P_0 P_1||_{TV} \approx 0.87$.
- If $\theta = 1$, $||P_0 P_1||_{TV} \approx 0.38$.
- If $\theta = 0.1$, $||P_0 P_1||_{TV} \approx 0.04$.

Proof of Theorem 1: Let f_0 , f_1 be the density functions of P_{θ_0} and P_{θ_1} respectively.

Consider the notation introduced in Lecture 6 and set $\pi_0 = 0.5$ and $c_{FP} = c_{FN} = 1$. In Lecture 6, we showed that the optimal Bayes test A^{Bayes} in this setting is characterized by

$$
A^{\text{Bayes}}(x) = \begin{cases} 1 & \text{if } f_1(x) > f_0(x) \\ 0 & \text{otherwise} \end{cases}.
$$

Moreover, recall that for any $A: \mathcal{X} \to \{0,1\},\$

$$
R_B(A, \pi_0 = 0.5) = \frac{1}{2} [P_{\theta_0} (A(X) = 1) + P_{\theta_1} (A(X) = 0)].
$$

In particular,

$$
R_B(A^{\text{Bayes}}, \pi_0 = 0.5) = \frac{1}{2} \Big[P_{\theta_0} \left(f_1(X) > f_0(X) \right) + P_{\theta_1} \left(f_1(X) \le f_0(X) \right) \Big]
$$
\n
$$
= \frac{1}{2} \Big[P_{\theta_0} \left(f_1(X) > f_0(X) \right) + 1 - P_{\theta_1} \left(f_1(X) > f_0(X) \right) \Big]
$$
\n
$$
= \frac{1}{2} \Big[1 - \| P_0 - P_1 \|_{TV} \Big]
$$

since $B^{\text{opt}} = \{x : f_1(x) > f_0(x)\}\$ from Lemma 1. The result follows from the Bayes optimality of A^{Bayes} .

□

The next lemma gives a coupling/optimal transport interpretation for the TV distance.

Lemma 2. If there exists $\gamma \in [0,1]$ such that $||P_0 - P_1||_{TV} = \gamma$, then there exists a joint distribution for $(X_0, X_1) \in \mathcal{X} \times \mathcal{X}$ with $P(X_0 = X_1) = 1 - \gamma$ and $X_0 \sim P_0$ and $X_1 \sim P_1$ marginally.

Note: we also have that $1 - \gamma$ is the maximum possible value for $P(X_0 = X_1)$ for X_0 and X_1 satisfying the conditions in the lemma.

The idea is that we can flip a coin that returns Heads with probability $1 - \gamma$ and returns Tails with probability γ . The distributions P_0 and P_1 are indistinguishable when the coin returns Heads, and the distributions P_0 and P_1 are different when the coin returns Tails.

Example 4 (Example 2 continued). We had that $||P_0 - P_1||_{TV} = 20\%$ and so we want to construct a joint distribution such that $P(X_0 = X_1) = 80\%$. Consider the following joint distribution:

$$
P(X_0 = x_0, X_1 = x_1) = \begin{cases} 0.6 & if (x_0, x_1) = (1, 1) \\ 0.1 & if (x_0, x_1) = (0, 0) \\ 0.1 & if (x_0, x_1) = (2, 2) \\ 0.2 & if (x_0, x_1) = (2, 0) \\ 0 & if (x_0, x_1) = (0, 2) \end{cases}
$$

Clearly, $P(X_0 = X_1) = 80\%$. Also, $P(X_0 = 0) = 0.1$, $P(X_0 = 1) = 0.6$, $P(X_0 = 2) = 0.3$ so that $X_0 \sim P_0$ and $P(X_1 = 0) = 0.3$, $P(X_1 = 1) = 0.6$, $P(X_1 = 2) = 0.1$ so that $X_1 \sim P_1$.

3 Composite Hypothesis Tests

Up to now, we have considered simple-simple hypothesis tests and derived that the optimal test is based on a threshold for the likelihood ratio. Now, we consider hypotheses where Θ_0 and Θ_1 are not singletons and tests $A : \mathcal{X} \to [0,1]$. Note that we are now allowing for randomized tests, which can be interpreted as a non-randomized test $A': \mathcal{X} \to \{0,1\}$ defined by $A'(X) = \mathbf{1}_{\{U \leq A(X)\}},$ where U is distributed as a uniform between 0 and 1 and is independent of X. Thus, $A(x)$ is the probability of rejecting the null given that we observed $x \in \mathcal{X}$.

3.1 Uniformly Most Powerful Tests

Definition 2 (UMP). A test A_{α}^{UMP} : $\mathcal{X} \rightarrow [0,1]$ is the uniformly most powerful test of size α if for all $\theta_1 \in \Theta_1$,

$$
E_{\theta_1}[A_{\alpha}^{UMP}(X)] = \sup_{A \in \mathcal{A}} E_{\theta_1}[A(X)],
$$

where $\mathcal{A} = \{A : \mathcal{X} \to [0,1] \text{ such that } \sup_{\theta_0 \in \Theta_0} E_{\theta_0}[A(X)] \leq \alpha \}.$

Example 5. Consider a Gaussian distribution with mean $\theta \in \mathbb{R}$ and unit variance and the hypothesis $\Theta_0 = (-\infty, 0], \Theta_1 = (0, \infty).$

Claim 1. The uniformly most powerful test of size α in this case is given by

$$
A_{\alpha}^{UMP}(x) = \begin{cases} 1 & \text{if } x > \Phi^{-1}(1-\alpha) \\ 0 & \text{otherwise} \end{cases}
$$

.

Proof. Consider a simple-simple hypothesis with $\Theta_0 = \{0\}$ and $\Theta_1 = \{\theta_1\}, \theta_1 > 0$. From the Neyman-Pearson Lemma, the optimal test for this simple-simple hypothesis is

$$
A^{\rm NP}(x) = \begin{cases} 1 & \text{if } \frac{f_1(x)}{f_0(x)} > \lambda \\ 0 & \text{otherwise} \end{cases}
$$

where f_0 is the pdf of the standard normal, f_1 is the pdf of $\mathcal{N}(\theta_1, 1)$ and λ satisfies

$$
P_0\left(\frac{f_1(X)}{f_0(X)} > \lambda\right) = \alpha.
$$

Here,

$$
\frac{f_1(x)}{f_0(x)} = \exp\left(\theta_1 x - \frac{\theta_1^2}{2}\right),\,
$$

which is strictly increasing in x , so an above-the-cutoff rule based on the likelihood ratio is equivalent to an above-the-cutoff rule based on x. Moreover, from the equation that implicitly defines λ , the Neyman-Pearson test binds the constraint. Thus, we can rewrite it as

$$
A^{\rm NP}(x) = \begin{cases} 1 & \text{if } x > \Phi^{-1}(1-\alpha) \\ 0 & \text{otherwise} \end{cases}
$$

which equals A_{α}^{UMP} .

Thus, because A_{α}^{UMP} satisfies the Type I Error constraint for $\theta_0 = 0$ and because

$$
E_{\theta_0}[A_{\alpha}^{\text{UMP}}(X)] = P_{\theta_0}(X > \Phi^{-1}(1 - \alpha)) = 1 - \Phi(\Phi^{-1}(1 - \alpha) - \theta_0)
$$

\n
$$
\leq 1 - \Phi(\Phi^{-1}(1 - \alpha))
$$

\n
$$
= P_0(X > \Phi^{-1}(1 - \alpha)) = E_0[A_{\alpha}^{\text{UMP}}(X)]
$$

for any $\theta_0 \in (-\infty, 0]$, A_{α}^{UMP} satisfies the Type I Error constraint for all $\theta_0 \in (-\infty, 0]$. Therefore, because A_{α}^{UMP} is optimal when $\theta_0 = 0$, satisfies the Type I Error constraint, and does not depend on θ_1 , it is the UMP of size α . \Box A key step in the proof above is the monotonicity of the likelihood ratio. We can extend the existence of a UMP for a more general class of statistical models with that property. Consider the following class.

Definition 3. A statistical model $\mathcal{P} = \{P_{\theta} : \theta \in \Theta \subseteq \mathbb{R}\}\$ has monotone likelihood ratio if there exists a function $T : \mathbb{R} \to \mathbb{R}$ such that for all $\theta_0 < \theta_1$, P_{θ_0} and P_{θ_1} are distinct and $f_{\theta_1}(x)/f_{\theta_0}(x) =$ $g_1(T(x))/g_0(T(x))$ for some functions g_0 , g_1 with g_1/g_0 nondecreasing.

The following theorem characterizes the UMP in the class of models defined above for the hypothesis $\Theta_0 = (-\infty, 0], \Theta_1 = (0, \infty).$

Theorem 2 (UMP with Monotone Likelihood Ratio). Suppose the statistical model has monotone likelihood ratio, then there is a UMP for the hypothesis $\Theta_0 = (-\infty, 0], \Theta_1 = (0, \infty)$ which is given by

$$
A^{UMP}(x) = \begin{cases} 1 & \text{if } T(x) > c \\ \gamma & \text{if } T(x) = c \\ 0 & \text{if } T(x) < c \end{cases}
$$

where $\gamma \in [0,1]$ and c and γ are uniquely determined by the Type I Error constraint.

Section 3.4 of Lehman and Romano (4th edition) gives many examples of distributions satisfying the monotone likelihood ratio property.