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2 Le Cam’s Method

Goal: minimax optimal rates (hardness bound)

We will do this for complex estimation poroblems where exactly computing Bayes-optimal risk is
hard.

Idea: reduce estimation to an (easier) testing problem. Hardness of testing (which we get from a
TV distance calculation) propagates to hardness of estimation.

Setting: A = R with loss L(a, ) creating an implicit distance

d(ao, 91) = in&L(a, 90) + L(a, 91).
ac

For example, if L(a, ) = (a — 6)?, then d(6o,61) = (|60 — 61>
Theorem 1. Le Cam’s Method: Let Py, Py, be distributions over X with d(6p,61) > 25. Let Q be

a uniform prior over 0y, 01. Then,

Rp(Q) = - (1 —||Pay — Pa, || 1v)
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where R;(Q) is the Bayes optimal risk, § represents the separation in parameter space, and
3 (1= ||Psy, — Py, || 7v) is the Bayes risk of testing Py, versus Pp,. This immediately implies

1)
Ry > 5 (1 =[Py — Pa,ll Tv)

where

i =  inf A
i = A REASp A0

s the minimazx optimal risk.

Proof. Consider any estimator A : X — A. Define an implied test mapping X — {0,1} by

A*Y(X) = argmin L(A(X), 6p).
be{0,1}

Thus, for any 6 € {6, 61},
L(A(X),H) 2 (51{0Atest(X) % 9}

SO
Rp(4;Q) = E[L(A(X),0)]
Z E[él{HAtest(X) 7é 0}]
= 3 [Py (A(X) = 1) + B, (A (X) = 0]
0
> ) (1- ||P90 _P01HTV)'
The minimax bound follows immediately. O

3 Uniform Location Example

Suppose X; “d Unif(f —1/2,0 +1/2) fori =1,...,n and § € R. We want to estimate 6§ under loss
L(a,0) = (a — 0)%2. We will use Le Cam’s method to get a minimiax hardness bound. Consider 6
versus 0 < 67 < 1.

R

Figure 1: Plot for the distributions we are considering in the uniform location example.

1P, — Py [lrv = sup Py (B) — P (B)
BCR"

=1—(1—6)"
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where we selected
BP' = {z| P} (x) > Py (x)} = {o|max(z) > 1/2} C R™.

To get a nontrivial bound, select 8; = % and apply Le Cam’s method with § = 8%, giving

5
Ry 2 5

1
(=170, = Pull) =0 ()

so the minimax risk is growing (at least) as 1/n?, which is the correct rate for this problem.

4 Density Estimation Example

Suppose X; ud Py where
Py € P = {distributions on [0, 1] with density fs such that 0 < ¢1 < fp(z) < co and |f"(x)| < cs3}.

We wish to estimate ¥(fy) = fo (f'(z))? do and want to know how statistically hard this problem
is.

Theorem 2. Consider d(6y,61) = 3(¥(60) — ¢(61))? € R with L(a,0) = (a — (0))%. Then, the
minimax rate is at least 1/n. (It is actually slightly higher, but we just show the 1/n bound.)
Proof. We will apply Le Cam’s Method with Py, = Unif(0, 1), and P, will be constructed according

to a more complex density. Let Py, have density fy and Py, have density f;.

First, we Construct f1 Let g : [0,1] — R be twice differentiable with fo x)dx =0, fo 2dx =
a >0, and fo 2dx = b > 0. We split (0,1) into m intervals of size 1 / m with centers T

Next, let gj(x) = C’Wg(mx —aj) for j = 1,...,m and fi(z) = 1+ 377, gj(¥). To compute
| Pg, — Pg.llTv, we relate TV distance to Hellinger distance. We first define Hellinger distance.

Definition 3. Hellinger distance. For Py, P, represented as densities,
H(Po,Pl /\/PQ—\/ .CC—l—/\/P()Pldl’

We have the following bound relating TV distance to Hellinger distance:
H*(Py, Py) < ||Py — Pi||ltv < /2H?(Py, P1) = V2H(Py, Py).

Continuing our proof, by Taylor expansion,

H (P907 P91 - Z/ gj == O(mCZCLmiE)) X m74.



Therefore,

1Pg, — P |lvv < V2H(Pg,, Fy)

" 1/2
=2 (1 - /[0 . 1TV fol@i) i (i) dﬂf)
) =1

= V2 (1 (1~ HX(Py, Py,))")"?
—ce (0,1) if m = nt/4,

Also note that, up to higher order terms,

P(f1) = o(fo) = /l(f’ (z))? dz = f: /l(g'-(x))2 do = Cm™?
o ! =170 !
so we get the scaling
Socm ™t =n"t

Finally, we apply Le Cam’s Method to get
Ry 2 0(1 = [|Pgy — Py llv) 2 1/n.

Note: this rate is not quite tight, but it is close.
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Figure 2: Example of what the construction for f; might look like. In this example, m = 3.



