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2 Le Cam’s Method

Goal: minimax optimal rates (hardness bound)

We will do this for complex estimation poroblems where exactly computing Bayes-optimal risk is
hard.

Idea: reduce estimation to an (easier) testing problem. Hardness of testing (which we get from a
TV distance calculation) propagates to hardness of estimation.

Setting: A = Rd with loss L(a, θ) creating an implicit distance

d(θ0, θ1) = inf
a∈A

L(a, θ0) + L(a, θ1).

For example, if L(a, θ) = (a− θ)2, then d(θ0, θ1) =
1
2∥θ0 − θ1∥2.

Theorem 1. Le Cam’s Method: Let Pθ0 , Pθ1 be distributions over X with d(θ0, θ1) ≥ 2δ. Let Q be
a uniform prior over θ0, θ1. Then,

R∗
B(Q) ≥ δ

2
(1− ∥Pθ0 − Pθ1∥TV)
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where R∗
B(Q) is the Bayes optimal risk, δ represents the separation in parameter space, and

1
2 (1− ∥Pθ0 − Pθ1∥TV) is the Bayes risk of testing Pθ0 versus Pθ1. This immediately implies

R∗
M ≥ δ

2
(1− ∥Pθ0 − Pθ1∥TV)

where
R∗

M = inf
A:X→A

sup
θ∈Θ

R(A, θ)

is the minimax optimal risk.

Proof. Consider any estimator A : X → A. Define an implied test mapping X → {0, 1} by

Atest(X) = argmin
b∈{0,1}

L(A(X), θb).

Thus, for any θ ∈ {θ0, θ1},
L(A(X); θ) ≥ δ1{θAtest(X) ̸= θ}

so

RB(A;Q) = E[L(A(X), θ)]

≥ E[δ1{θAtest(X) ̸= θ}]

=
δ

2

[
Pθ0(A

test(X) = 1) + Pθ1(A
test(X) = 0)

]
≥ δ

2
(1− ∥Pθ0 − Pθ1∥TV) .

The minimax bound follows immediately.

3 Uniform Location Example

Suppose Xi
iid∼ Unif(θ − 1/2, θ + 1/2) for i = 1, . . . , n and θ ∈ R. We want to estimate θ under loss

L(a, θ) = (a− θ)2. We will use Le Cam’s method to get a minimiax hardness bound. Consider θ0
versus 0 < θ1 < 1.

Figure 1: Plot for the distributions we are considering in the uniform location example.

∥Pn
θ0 − Pn

θ1∥TV = sup
B⊂Rn

Pn
θ1(B)− Pn

θ0(B)

= 1− (1− θ1)
n

≈ nθ1
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where we selected

Bopt = {x|Pn
θ1(x) ≥ Pn

θ0(x)} = {x|max(x) > 1/2} ⊂ Rn.

To get a nontrivial bound, select θ1 =
1
2n and apply Le Cam’s method with δ = 1

8n2 , giving

R∗
M ≥ δ

2
(1− ∥Pθ0 − Pθ1∥TV) = Θ

(
1

n2

)
.

so the minimax risk is growing (at least) as 1/n2, which is the correct rate for this problem.

4 Density Estimation Example

Suppose Xi
iid∼ Pθ where

Pθ ∈ P = {distributions on [0, 1] with density fθ such that 0 < c1 < fθ(x) < c2 and |f ′′(x)| < c3}.

We wish to estimate ψ(fθ) =
∫ 1
0 (f

′(x))2 dx and want to know how statistically hard this problem
is.

Theorem 2. Consider d(θ0, θ1) = 1
2(ψ(θ0) − ψ(θ1))

2 ∈ R with L(a, θ) = (a − ψ(θ))2. Then, the
minimax rate is at least 1/n. (It is actually slightly higher, but we just show the 1/n bound.)

Proof. We will apply Le Cam’s Method with Pθ0 = Unif(0, 1), and Pθ1 will be constructed according
to a more complex density. Let Pθ0 have density f0 and Pθ1 have density f1.

First, we construct f1. Let g : [0, 1] → R be twice differentiable with
∫ 1
0 g(x) dx = 0,

∫ 1
0 (g(x))

2 dx =

a > 0, and
∫ 1
0 (g

′(x))2 dx = b > 0. We split (0, 1) into m intervals of size 1/m with centers xm.

Next, let gj(x) = C 1
m2 g(mx − xj) for j = 1, . . . ,m and f1(x) = 1 +

∑m
j=1 gj(x). To compute

∥Pn
θ0

− Pn
θ1
∥TV, we relate TV distance to Hellinger distance. We first define Hellinger distance.

Definition 3. Hellinger distance. For P0, P1 represented as densities,

H2(P0, P1) =
1

2

∫
(
√
P0 −

√
P1)

2 dx = 1−
∫ √

P0P1 dx.

We have the following bound relating TV distance to Hellinger distance:

H2(P0, P1) ≤ ∥P0 − P1∥TV ≤
√
2H2(P0, P1) =

√
2H(P0, P1).

Continuing our proof, by Taylor expansion,

H2(Pθ0 , Pθ1) = O

 m∑
j=1

∫ 1

0
(gj(x))

2 dx

 = O(mC2am−5) ∝ m−4.
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Therefore,

∥Pn
θ0 − Pn

θ1∥TV ≤
√
2H(Pn

θ0 , P
n
θ1)

=
√
2

(
1−

∫
[0,1]n

n∏
i=1

√
f0(xi)f1(xi) dx

)1/2

=
√
2
(
1− (1−H2(Pθ0 , Pθ1))

n
)1/2

→ c ∈ (0, 1) if m = n1/4.

Also note that, up to higher order terms,

ψ(f1)− ψ(f0) =

∫ 1

0
(f ′1(x))

2 dx =
m∑
j=1

∫ 1

0
(g′j(x))

2 dx = Cm−2

so we get the scaling
δ ∝ m−4 = n−1.

Finally, we apply Le Cam’s Method to get

R∗
M ≳ δ(1− ∥Pn

θ0 − Pn
θ1∥TV) ≳ 1/n.

Note: this rate is not quite tight, but it is close.

Figure 2: Example of what the construction for f1 might look like. In this example, m = 3.
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