6.S951 Modern Mathematical Statistics Fall 2024

Lecture 9 — October 3, 2024

Prof. Stephen Bates

Scribe: Kai M. Hung

1 Outline

This lecture marks the beginning of part II in this course, focusing on statistical inference.

Agenda:

- 1. Probability Recap: CLT & Hoeffding's
- 2. Confidence Intervals from CLT & Hoeffding's
- 3. Distribution-free Confidence Intervals

2 Recap on CLT & Hoeffding's Inequality

Definition 1 (Convergence in Distribution). A sequence of random variables ${Y_n}$ converges in distribution to r.v. Y^* if

$$
\mathbb{P}(Y_n \le t) \to \mathbb{P}(Y^* \le t) \quad \forall t
$$

where $\mathbb{P}(Y^* = t) = 0$. This is denoted as $Y_n \stackrel{d}{\rightarrow} Y^*$.

Definition 2 (Convergence in Probability). A sequence of random variables ${Y_n}$ converges in probability to r.v. Y^* if

 $\mathbb{P}(|Y_n - Y^*| \geq \epsilon) \to 0 \quad \forall \epsilon > 0$

This is denoted as $Y_n \stackrel{p}{\to} Y^*$.

The setting from this point forth:

- X_1, X_2, \ldots, X_n are i.i.d. from P , where $X_i \in \mathbb{R}^d$ for all $i = 1, 2, \ldots, n$
- $\vec{X} = (X_1, X_2, \dots, X_n)$
- $\bar{X} = \frac{1}{n}$ $\frac{1}{n}\sum_{j=1}^n X_j$

Theorem 3 (Law of Large Numbers). If $\mathbb{E}(X_i) = \mu$ exists and finite, then $\bar{X} \stackrel{p}{\to} \mu$ as $n \to \infty$.

Theorem 4 (Central Limit Theorem). Suppose $\mathbb{E}(X_i) = \mu$ and $\mathbb{E}[(X_i - \mu)(X_i - \mu)^{\top}] = \Sigma$ both exists and are finite, then √

$$
\sqrt{n}(\bar{X}-\mu) \stackrel{d}{\to} \mathcal{N}(0,\Sigma)
$$

This implies that $\bar{X} \sim \mathcal{N}(\mu, \Sigma)$.

Theorem 5 (Continuous Mapping Theorem). If $g : \mathbb{R}^d \to \mathbb{R}^{d'}$ is continuous, then

$$
Y_n \stackrel{d}{\to} Y^* \implies g(Y_n) \stackrel{d}{\to} g(Y^*)
$$

$$
Y_n \stackrel{p}{\to} Y^* \implies g(Y_n) \stackrel{p}{\to} g(Y^*)
$$

Corollary 6 (Slutsky's Lemma). If $Y_n \stackrel{d}{\to} Y^*$ and $Z_n \stackrel{p}{\to} c$ for some constant c, then

$$
Y_n + Z_n \stackrel{d}{\to} Y^* + c
$$

\n
$$
Y_n \cdot Z_n \stackrel{d}{\to} Y^* \cdot c
$$

\n
$$
Y_n/Z_n \stackrel{d}{\to} Y^*/c
$$

\nif $c \neq 0$

Example 1 (Sample Variance).

$$
\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2
$$

=
$$
\underbrace{\frac{1}{n} \sum_{i=1}^n X_i^2}_{\frac{p}{\Delta} \mathbb{E} X_i^2} - \underbrace{(\bar{X})^2}_{\frac{p}{\Delta} \mathbb{E} X_i^2}
$$
 by LLN
by Slutsky's Lemma

Theorem 7 (Hoeffding's Inequality). Let $X_i \stackrel{iid}{\sim} \mathcal{P}$ with mean μ , $a \leq X_i \leq b$ for all i

$$
\mathbb{P}(|\bar{X} - \mu| > \epsilon) \le 2 \cdot e^{-2n\epsilon^2/(b-a)^2}
$$

Equivalently $\epsilon = (b-a)\sqrt{\frac{\log(2/\delta)}{2n}}$ $\frac{2\langle 2/\delta \rangle}{2n}$ such that $\delta \leq \mathbb{P}(|\bar{X} - \mu| > \epsilon)$ for all $\delta, \epsilon > 0$.

3 Confidence Intervals

Informally, a confidence interval (CI) is a function of data that aims to contain some target w/ probability $1 - \alpha$, for some prescribed $\alpha \in (0, 1)$. Formally, a confidence interval is a function of the form $C: \mathcal{X} \to 2^{\mathbb{R}}$.

Example 2 (CI for Sample Mean). For $X_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ with unknown μ and known σ :

$$
C(\bar{X}) = \left(\bar{X} - \Phi^{-1}\left(\frac{\alpha}{2}\right)\frac{\sigma}{\sqrt{n}}, \quad \bar{X} + \Phi^{-1}\left(\frac{\alpha}{2}\right)\frac{\sigma}{\sqrt{n}}\right)
$$

Definition 8 (Finite-Sample Valid). A CI is finite-sample valid at level $\alpha \in (0,1)$ for fixed θ if $\mathbb{P}(\theta \in C(\vec{X})) \geq 1 - \alpha$

Definition 9 (Asympotically Valid). A CI is asymptotically valid at level $\alpha \in (0,1)$ for fixed θ if $\mathbb{P}(\theta \in C(\vec{X})) \to \delta \geq 1 - \alpha \quad as \quad n \to \infty$

Example 3 Gaussian CI with known variance is finite-sample valid.

Example 4 (CLT Confidence Interval). Suppose $X_i \stackrel{\text{iid}}{\sim} \mathcal{P}$ with mean μ and finite variance σ^2 (both unknown). Suppose we want to estimate μ . Then, the CLT CI is:

$$
C^{\text{CLT}}(\bar{X}) = \left(\bar{X} - \Phi^{-1}\left(\frac{\alpha}{2}\right)\frac{\hat{\sigma}}{\sqrt{n}}, \quad \bar{X} + \Phi^{-1}\left(\frac{\alpha}{2}\right)\frac{\hat{\sigma}}{\sqrt{n}}\right)
$$

where $\hat{\sigma} = \frac{1}{n}$ $\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$.

Proposition 10 (Asymptotic Validity of C^{CLT}).

$$
P\left(\mu \in CI^{\text{CLT}}(\vec{X})\right) \to 1 - \alpha \quad \text{if} \quad n \to \infty
$$

for all P with finite variance.

Proof.

$$
P\left(\mu \in CI^{\text{CLT}}(\vec{X})\right) = P\left(\bar{X} - \Phi^{-1}\left(\frac{\alpha}{2}\right) \frac{\hat{\sigma}}{\sqrt{n}} \le \mu \le \bar{X} + \Phi^{-1}\left(\frac{\alpha}{2}\right) \frac{\hat{\sigma}}{\sqrt{n}}\right)
$$

$$
= P\left(-\Phi^{-1}(\alpha/2) \le \frac{\sqrt{n}(\bar{X} - \mu)}{\hat{\sigma}} \le \Phi^{-1}(\alpha/2)\right)
$$

$$
= P\left(-\Phi^{-1}(\alpha/2) \le \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \cdot \underbrace{\frac{\sigma}{\hat{\sigma}}}_{\text{div}(0,1) \text{ by CLT}} \le \Phi^{-1}(\alpha/2)\right)
$$

$$
\to 1 - \alpha \quad \text{as} \quad n \to \infty
$$

 \Box

Example 5 (Hoeffding's CI). Suppose $X_i \stackrel{\text{iid}}{\sim} P, a \leq X_i \leq b$, unknown mean μ .

$$
C^{\text{Hoeff}}(\vec{X}) = (\bar{X}-\epsilon, \bar{X}-\epsilon)
$$

is finite-sample valid where $\epsilon = (b-a)\sqrt{\frac{\log(2/\alpha)}{2n}}$ $\frac{(2/\alpha)}{2n}$.

Remark: Hoeffding's CI is not typically used in practice since they are very conservative. They are useful for proofs though.

4 Distribution-Free Confidence Intervals

Fact 11. If $\mathcal{P} = \{all\ dist.\ w/\ finite\ variance\}$, there is no non-trivial confidence interval of the mean that is finite-sample valid. The intuition behind this is that you can perturb any distribution by adding mass far from the estimation of the mean, and shift the mean.

Theorem 12 (Bahadur-Savage). Suppose $P(\mu \in C(\vec{X}) \geq 1-\alpha$ for all $P \in \mathcal{P}$ (the set of dist. with finite variance). Then for any fixed P_0 , $\forall m \in \mathbb{R}$

$$
P_0\left(m \in C(\vec{X})\right) \ge 1 - \alpha
$$